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Introduction
Genome-wide association studies (GWAS) have delivered hundreds of 
bona-fide associations to complex human disease1. This surge has led 
to new insights about the etiology of many diseases and is redefining 
scientific aims and approaches across human genetics. Despite these 
successes, it is increasingly clear that the majority of common alleles 
associated with disease contribute weakly to overall disease suscep-
tibility, with only a handful conferring >25% increase in risk (Figure 1). 
Indeed, GWAS have only uncovered a fraction of the genetic architec-
ture of human disease (e.g. 40 loci for height explain less than 10% of 
genetic variance)2, and a great deal of interest is currently focused on 
explaining this “missing heritability.”

Emerging technologies such as next-generation sequencing and very 
high-density microarrays present opportunities to further under-
stand the genetic variation that underpins phenotypic variation. This 
technological evolution, along with the availability of data from public 
resources like the HapMap and 1000 Genomes projects, offers a 
compelling motivation to extract maximum value from existing GWAS 
data through additional analysis and expansion of sample numbers. 
Genotype imputation is a statistical approach that can be used in 
concert with large-scale reference projects to increase the power of 
existing GWAS and further the discovery of novel associations. During 
the imputation process, GWAS genotypes at a few hundred thousand 
sites are analyzed in conjunction with a reference sample genotyped at 
millions of sites. 

Imputation uses the correlation between markers present in the refer-
ence sample for making predictions of the genotypes present in an 
experimental sample. An imputation algorithm uses both the dense 
information from the reference data set and the less-dense genotype 
information from the experimental sample to infer genotypes at SNPs 
not directly genotyped in the experiment. The correlation between 
markers is described by linkage disequilibrium (LD) patterns across 
the genome, and is similar across the reference and experimental 
samples.  This phenomenon provides the bridge that allows imputa-
tion to be successful. Therefore, assuming the information in a refer-
ence sample is fixed, the choice of markers initially genotyped in an 
experimental data set can strongly influence the success of imputation 
downstream. Illumina’s BeadChips are designed to efficiently capture, 
or tag, nearly all common variants across the genome. This tag SNP 
approach is designed to leverage known correlations of markers 
across the genome, making the data from these arrays well suited to 
cross-chip imputation. The use of LD yields higher statistical power to 
detect associations, and increased imputation accuracy in comparison 
to arrays with randomly selected SNP content.

Because commercial genotype platforms differ in their SNP content, 
and updated content is continually being added to newer products, 
imputation serves as a crucial bridge when merging distinct studies 
genotyped on different platforms, combining different versions of the 

same platform, or adopting a new platform during the course of a 
study. For GWAS, such meta-analyses are necessitated by the need 
for large sample sizes to discover modest genetic effects (Figure 2). 
This article presents a detailed description of genome-wide imputa-
tion applied to such meta-analyses by way of two examples: Crohn’s 
disease (CD)3 and Type 1 diabetes (T1D)4, and a brief discussion of 

the future utility of imputation in testing association to rare variants.

Methods
GWAS data from three separate scans for CD were assembled as 
part of a meta-analysis aimed at identifying common alleles of modest 
effect: 1450 Belgian and French samples6 genotyped on the Illumina 
HumanHap300, 1923 US and Canadian samples7 also genotyped 
on the Illumina HumanHap300, and 4686 UK samples genotyped on 
the Affymetrix GeneChip 500K as part of the Wellcome Trust Case 
Control Consortium (WTCCC)8. Standard QC metrics including miss-
ing data rate, heterozygosity, allele frequency, and Hardy-Weinberg 
equilibrium were applied to each data set separately to obtain clean 
data sets for imputation. All genotypes were aligned to the + strand 
of build 35 of the human genome in order to match the reference set 
(details below). While the choice of build and orientation is arbitrary, 
this alignment step is critically important to avoid imputation errors, 
especially for SNPs with complement alleles (i.e. A/T, C/G). Different 
imputation programs use different file formats, but all accept either 
the pedigree-style genotype files used by standard analysis programs 
such as PLINK9 (e.g. MACH, BEAGLE), or provide specially designed 
file format conversion tools (e.g. IMPUTE). An excellent discussion of 
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these key practicalities in imputation analysis is provided by de Bakker 
et al10. They provide detailed examples about annotating build, strand 
and allele information for SNPs on commercial platforms, advice on 
aligning these data to the HapMap, and information about correctly 
performing association tests on imputed data.

The initial CD meta-analysis used the HapMap2 data set consist-
ing of 2.6 million SNPs in 60 individuals of European ancestry as the 
reference. Despite the success of this meta-analysis, it is likely that 
ever larger sample sizes will allow the detection of additional modest 
risk factors. A new extension to this study will add three additional 
sets of CD samples genotyped on the Illumina HumanHap550-Duo 
(comprising 3094 cases and 10,225 controls). This second-generation 
meta-analysis will use the new HapMap3 data release as a reference, 
consisting of roughly 1.5 million SNPs from two commercially available 
platforms (the Illumina Human1M-Duo and Affymetrix Human SNP ar-
ray 6.0) genotyped in 200 European individuals. Despite having fewer 
total SNPs than HapMap2, this new resource is recommended for 
imputation for several reasons. First, data quality affects the accuracy 
of imputation and HapMap3 is more accurate than HapMap2. While 
most HapMap2 data were of high quality, the data set contained a 
small number of poorly performing SNPs, which can have adverse 
effects when cases and controls have been genotyped on different 
chips. The HapMap3 has extended the set of populations sampled 
(which is crucial for GWAS in non-European samples), and increased 
the number of individuals from each population. The larger reference 
sample size of HapMap3 offers substantial gains in imputation ac-
curacy, especially for SNPs with <10% frequency. Finally, nearly all of 
the remaining common SNPs in HapMap2 are highly correlated with 
one or more SNPs in HapMap3; therefore, the additional SNPs in Hap-
Map2 provide little additional information. The high-quality genotypes 
and larger sample panel in HapMap3 make it the current state-of-the-
art reference set.

A number of different statistical frameworks have been used to tackle 

the problem of genotype imputation, each of which has advantages 
and drawbacks. The initial CD meta-analysis used the popular pro-
grams MACH11 and IMPUTE12. These programs yield high accuracy 
of imputed genotypes via a hidden Markov model that captures certain 
aspects of population history such as the local recombination rate. The 
trade off for the complexity of these programs is that they run slowly 
and require a large amount of memory, making them less suitable 
for the large HapMap3 reference set. The current extension of the 
CD project is using another HMM-based program, BEAGLE, which 
achieves nearly the same imputation accuracy but runs faster and 
can scale more readily to reference sets with hundreds of samples13. 
BEAGLE’s speed and the ease with which it incorporates the Hap-
Map3 data make it a good choice for current imputation analysis, but 
different tools may be better suited to specific problems, as discussed 
by Ellinghaus et al14. Finally, it is worth noting that the developers of 
these algorithms are constantly improving their programs  
(e.g. IMPUTE v215) to enable quicker run-times or to provide new 
features. 

The time required to impute the CD extension data set scaled ap-
proximately linearly with the number of GWAS samples. For example, 
BEAGLE required approximately 2000 CPU-hours to impute the 
HapMap3 SNPs into the 4686 WTCCC CD samples and 622 hours to 
impute into the 1452 Belgian/French samples. Imputation can easily 
be parallelized across sections of chromosomes and subsets of the 
sample, but each sample subset must contain a consistent mixture 
of cases and controls13 to avoid introducing differential bias in the 
imputed allele frequency estimates. High memory requirements (>8GB) 
can pose problems, but both IMPUTE v2 and BEAGLE have configu-
rable trade offs between memory usage and processing time. With 
today’s technology, genome-wide imputation cannot be carried out 
on a standard desktop computer. However, given that it must only be 
done once for a given experimental data set, and it adds considerable 
value to expensive GWAS data sets, imputation is a tractable task for 
groups with even modest computational resources.

Fast Imputation in a Meta-Analysis of Type 1 
Diabetes
In a similar experiment, a GWAS of T1D involving 8000 UK samples 
was undertaken with the Illumina HumanHap550-Duo BeadChip. We 
chose the Illumina HumanHap550-Duo because it provided extremely 
high-quality genotypes and excellent coverage of common variation in 
European samples. A meta-analysis was then completed using these 
data and two previous GWAS run with the Affymetrix 500K chips. By 
using imputation, these data could be confidently integrated across 
platforms, allowing the selection of the higher coverage Illumina chip16 
for the second GWAS.

Approximately 1500 control samples from the 1958 British Birth 
Cohort overlapped between the individual GWAS samples and were 
genotyped on both chips. This set of samples allowed a much simpler 
imputation method to be employed, where linear regressions of nearby 
SNPs were used as predictors (implemented in snpMatrix17) and with 
similar accuracy to the HMM methods described above. Imputation 
accuracy was assessed in the 1958 BBC samples that were typed on 
both the Affymetrix 500K and Illumina HumanHap550-Duo platforms. 
The SNPs on the Affymetrix chip were used to impute SNPs on the 
Illumina chip, and vice versa. The predictions were then compared to 
the true genotypes on the unused chip in each case.
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Association Analysis of Imputed Data
Regardless of what software or reference sets are used to generate 
imputed data, some care is required in the subsequent association 
analysis. While genotype platforms generally produce exact genotype 
calls (i.e. each individual is assigned genotype AA, AB, or BB), imputa-
tion programs generate probabilities for each of the three possible 
genotypes. The simplest means of analyzing this output is to take the 
‘best guess’ genotypes (i.e. the genotype with the highest probability) 
and analyze in the classical fashion, but this approach will ultimately 
lose power and incorrectly weight different constituent scans in a 
meta-analysis because it does not account for the uncertainty in geno-
type assignment10. Luckily, nearly all genome-wide association pack-
ages (including snpMatrix17, SNPTEST and PLINK v1.079) can analyze 
the genotype dosages (the expected number of copies of a specified 
allele, from 0 to 2) that are produced by imputation programs.

Results
For common variation, imputation results are extremely accurate and 
allow for seamless integration of data sets in meta-analyses. Figure 
3 shows that nearly all SNPs with frequency >0.01 were predicted 
with high accuracy. Imputation based on Illumina HumanHap550-Duo 
genotypes was more accurate (87% r2 > 0.9) than imputation from 
Affymetrix 500K genotypes (60% r2 > 0.9). Better coverage of com-
mon variation and higher data quality contribute to this difference in 
accuracy; newer versions of these chips are likely to perform even bet-
ter. The large fraction of accurately imputed variants enables powerful 
joint analysis of nearly all SNPs on any of the SNP chips used in the 
individual CD or T1D scans. 

Joint association analysis of the imputed data sets did not substan-

tially inflate the overall test statistics in either CD (λGC=1.16) or T1D 

(λGC=1.12), indicating that imputation did not induce any system-

       Figure 3: Imputation Delivers Highly Accurate          
       Results
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Imputation results were found to be extremely accurate for the majority of 
SNPs.  Over 80% of imputed SNPs were found to have an r2>0.9.  r2 is 
a measure of accuracy with 1 being the most accurate and 0 being inac-
curate.

atic biases. Across both studies, 25 associations which had been 
previously uncovered in the analyses of the constituent scans were 
confirmed, and a further 36 novel regions with meta-analysis P<10-6 
were taken forward to replication. Of these, 30 reached genome-wide 
significance after replication, and several others showed nominal 
evidence of replication, representing a doubling of confirmed loci via 
imputation based meta-analysis. The extremely high rate of replication 
of the significant initial findings implies that very few strong artifactual 
associations were introduced by imputation and underscores the reli-
ability of the method.

Discussion
Genotype imputation is becoming a de rigeur part of GWAS, and 
it has been used in meta-analyses of many different diseases and 
traits. Individual GWAS are rarely large enough to discover associa-
tions with odds ratios <1.2 (Figure 2). By combining data sets from 
multiple complementary studies, researchers can increase the sample 
size of their analysis to uncover such associations. However, without 
imputation, the SNP sets from disparate chips act as an impediment 
to combining data sets or to adopting new platforms. In the studies 
described within this application note, the increase in power from us-
ing larger meta-analysis sample sizes doubled the number of identified 
loci in both CD and T1D. The high accuracy and reliability of current 
imputation methods have led to widespread acceptance and have 
established the technique as a standard practice for the analysis of 
disease genetics data sets. As a testament to the extent of imputa-
tion adoption, the manuscripts describing popular methods such as 
IMPUTE and BEAGLE have been cited hundreds of times throughout 
the literature. 

The rapid pace of technological development in genome-wide SNP 
chips has spured human disease genetics research, with the density of 
chips increasing by an order of magnitude in the last few years. At first 
glance, this presents a challenge to the analysis of experiments that 
include data from current cutting-edge products together with data 
sets that, while only a few years old, were generated with a different 
version of a product or even a completely different platform. However, 
dozens of high-profile GWAS meta-analyses incorporating data from 
many different chips have all been enabled by imputation, and clearly 
demonstrate that previous GWAS need never be abandoned, but 
can be repeatedly drawn on in dissecting the genetic architecture of 
disease.

While imputation is already ubiquitous in analyses that combine data 
sets across different genotype platforms, it will become increasingly 
important for future analyses when reference sets with much larger 
numbers of SNPs (including a large proportion of rare variants) will 
be available. Because common SNPs are so well covered by the 
current generation of SNP chips, there have not been many examples 
of associations discovered via imputation within a single study18 (as 
opposed to the meta-analyses discussed within this document, which 
combined information across studies). However, once projects like 
the 1000 Genomes generate reference sets with nearly all variants 
at >1% frequency (compared to the HapMap which is only complete 
to 5–10%), the usage of imputation within single studies will become 
much more prominent. For example, Figure 4 shows WTCCC CD 
genotypes and 1000 Genomes imputation at the well characterized 

NOD2 locus, where two rare missense and a frameshift mutation 
have been shown to be causal19, accounting for the signal at nearby 
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common SNPs. While GWAS capture an extremely strong signal at 
this locus, they give little insight into the underlying causal mutations. 
However, the imputed data immediately identify one of the missense 
mutations being among the strongest local associations. Given its 
known function, the identified association would make this mutation an 
attractive candidate for further study. Interestingly, the other two causal 
mutations are too rare to be observed in this early release of  
1000 Genomes data, and highlight the possibility for greater discover-
ies once the complete data are available.

       Figure 4: Identification of a Rare Mutation by 
       Imputation Analysis
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known functional polymorphism19.

The future utility of genome-wide imputation will rest on parallel ap-
plications: keeping archival GWAS current by allowing them to be 
integrated into new studies, and maximizing the power of GWAS to 
begin to test for association to rare variations. These methods have 
the potential to trigger a renaissance of GWAS discoveries as the 
1000 Genomes Project releases higher quality data on more samples 
and SNPs (as well as indels and larger copy-number polymorphisms). 
Through meta-analysis across disparate genotype platforms and in the 
application of exciting new reference sets, imputation allows research-
ers to probe more deeply into the allelic architecture of disease.

Imputation Web Resources 

Online Resource Web Address

HapMap Project http://www.hapmap.org

1000 Genomes Project http://1000genomes.org

BEAGLE
 
http://www.stat.auckland.
ac.nz/~bbrowning/beagle/beagle.html

IMPUTE http://mathgen.stats.ox.ac.uk/impute/
impute.html

MACH http://www.sph.umich.edu/csg/abeca-
sis/mach

snpMatrix http://www.bioconductor.org/packages/
bioc/html/snpMatrix.html

PLINK http://pngu.mgh.harvard.edu/ 
purcell/plink
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