Quantify and Dilute DNA

- ☐ 1 Quantify DNA using a fluorometric method.
- 2 If enough DNA is available, dilute to an intermediate concentration as follows.
 - ☐ a Dilute to a concentration of ~20–50 ng/µl using Low TE.
 - Bequantify the diluted DNA using the same fluorometric quantification method.
- 3 Dilute DNA to desired final concentration using Low TF.

Amplify DNA Targets

1 Combine the following volumes per sample in a 1.5 ml tube.

Reagent	Volume (μl)
5X AmpliSeq HiFi Mix (red cap)	5
DNA (2-200 ng)	≤ 7.5
Nuclease-free water	To reach total required volume
Total Volume	12.5

- □2 Pipette to mix, and then centrifuge briefly.
- 3 Transfer each sample to a PCR plate as follows.
 - a Transfer 5 µl master mix to one well.
 - b Transfer 5 µl of the same master mix to a second well.
 - □ c Add 5 µl 2X AmpliSeq Comprehensive DNA Panel v3 Pool 1 (blue cap) to the first
 - DNA Panel v3 Pool 2 (blue cap) to the second well.
- 4 Pipette to mix, seal the plate, and then centrifuge briefly.
- Display="2">
 Place on the thermal cycler, cover with a compression pad (if applicable), and run the AMP_DNA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 24 hours. For longer durations, store at -25°C to -15°C.

Partially Digest Amplicons

- 1 Briefly centrifuge to collect contents.
- 2 For each sample, combine the 10 μl target amplification reaction from the sample well containing pool 2 into the well containing pool
- ☐ 3 Add 2 µl FuPa Reagent (brown cap) to each target amplification reaction.
- ☐ 4 Vortex briefly, and then centrifuge briefly.
- D5 Place on the thermal cycler, cover with a compression pad (if applicable), and run the FUPA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 1 hour. For longer periods, store at -25°C to -15°C.

For Research Use Only. Not for use in diagnostic procedures.

Quantify and Dilute RNA

□ 1	Quantify RNA using a fluorometric method.		
\square 2	If enough RNA is available, dilute to an		
	intermediate concentration as follows.		
	\square a Dilute to a concentration of ~20–50 ng/ μ		
	using nuclease-free water.		
	b Requantify the diluted RNA.		
□3	Dilute RNA to desired final concentration.		

Reverse Transcribe RNA

□ 1	For one sample, combine the following
	volumes in one well of a 96-well PCR plate. For
	multiple samples, prepare a master mix
	without RNA in a 1.5 ml tube.
	5X AmpliSeq cDNA Reaction Mix (2 μl)
	10X AmpliSeq RT Enzyme Mix (1 μl)
	Total RNA (2–200 ng) (≤ 7 μl)
	Nuclease-free water (to 10 μl)
\square 2	Seal the plate.
\square 3	Vortex thoroughly, and then centrifuge briefly.

SAFE STOPPING POINT

RT program.

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 16 hours. For longer durations, store at -25°C to -15°C.

☐ 4 Place on the thermal cycler, cover with a

compression pad (if applicable), and run the

Amplify cDNA Targets

J 1	Brie	ally centrifuge the plate to collect contents
2	Add	the following volumes per sample to eac
	wel	1.
	> 5	5Χ AmpliSeq HiFi Mix (4.5 μl) (red cap)
	I	Nuclease-free water (3.5 µl)
]3	Pipe	ette to mix.
4	Sea	If the plate, and then centrifuge briefly.
]5	Trai	nsfer each sample to a PCR plate as
	follo	ws.
	□a	Transfer 8 µl master mix to one well.
	\Box b	
		second well.
	С	
		RNA Panel v3 Pool 1 (red cap) to the first
	□d	well. Add 2 µl 5X AmpliSeq Comprehensive
	ши	RNA Panel v3 Pool 2 (red cap) to the
		second well.
]6	Spa	If the plate.
]7		ce on the thermal cycler, cover with a
		npression pad (if applicable), and run the
		P_RNA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C overnight or store at -25°C to -15°C.

For Research Use Only. Not for use in diagnostic procedures.

Partially Digest Amplicons

□ 1	Briefly centrifuge to collect contents.
\square 2	For each sample, combine the 10 µl target
	amplification reaction from the sample well
	containing pool 2 into the sample well
	containing pool 1.
□3	Add 2 µl FuPa Reagent (brown cap) to each
	target amplification reaction.

- 4 Vortex briefly, and then centrifuge briefly.
- Place on the thermal cycler, cover with a compression pad (if applicable), and run the FUPA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10° C for up to 1 hour. For longer periods, store at -25° C to -15° C.

Transfer Amplicons

- ☐ 1 Briefly centrifuge the DNA and RNA library plates to collect contents.
- Transfer the amplicons from the RNA plate to the corresponding empty wells of the DNA plate.

Ligate Indexes

1 Add the following volumes *in the order listed* to each well.

Reagent	Volume (μl)
Switch Solution (yellow cap)	4
AmpliSeq CD Indexes or UD Indexes for Illumina	2
DNA Ligase (blue cap)	2

- ☐ 2 Seal the library plate.
- □3 Vortex briefly, and then centrifuge briefly.
- Place on the thermal cycler, cover with a compression pad (if applicable), and run the LIGATE program.
- If the index plate contains unused indexes, seal the plate and return to storage.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 24 hours. For longer durations, store at -25°C to -15°C.

For Research Use Only. Not for use in diagnostic procedures.

Clean Up Library

∐1	Briefly centrifuge the plate to collect contents.
\square 2	Add 30 µl AMPure XP beads to each library.
□3	Vortex briefly.
\Box 4	Inspect each well to make sure that the
	mixture is homogeneous.
\Box 5	Centrifuge briefly.
□6	Incubate at room temperature for 5 minutes.
□ 7	Place on a magnetic stand until the mixture is clear.
□8	Remove and discard supernatant.
9	Wash with 150 µl 70% EtOH.
□10	Wash again with 150 µl 70% EtOH.
□ 11	Centrifuge briefly.
	Place on the magnetic stand.
□ 13	Immediately remove all residual EtOH as
	follows.
	a Use a 20 µl pipette to remove residual EtOH.
Г	b Air-dry on the magnetic stand.
	c Inspect each well to make sure that the
	EtOH has evaporated.
	d If EtOH remains, continue to air-dry until
	EtOH is no longer visible.
□ 14	If you are using the AmpliSeq Library Equalizer
	for Illumina, proceed to Equalize Libraries on
	page 5. Otherwise, continue to <i>Amplify Library</i> on page 4.
	on page 4.

Amplify Library

_1	For each reaction,	combine	the	following
	volumes.			

Reagent	Volume (μΙ)	
1X Lib Amp Mix (black cap)	45	
10X Library Amp Primers (pink cap)	5	
Vortex briefly, and then centrifuge briefly.		

- $\square 2$
- □3 Remove the plate from the magnetic stand.
- ☐ 4 Add 50 µl amplification master mix to each library well.
- □ 5 Vortex briefly, and then centrifuge briefly.
- ☐ 6 Place on the thermal cycler, cover with a compression pad (if applicable), and run the AMP_7 program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 24 hours. For longer durations, store at -25°C to -15°C.

Perform Second Cleanup

□1 □2	Briefly centrifuge the plate to collect contents. Add 25 µl AMPure XP beads to each well.
\square 3	Vortex briefly, and then centrifuge briefly.
\Box 4	Incubate at room temperature for 5 minutes.
□ 4	Place the plate on a magnetic stand until the
	liquid is clear.
□6	Transfer the <i>entire</i> supernatant (~75 µl), <i>which</i>
	contains the desired amplicon library, to a new plate.
□ 7	Add 60 µI AMPure XP beads.
8	Vortex briefly, and then centrifuge briefly.
□9	Incubate at room temperature for 5 minutes.
	Place on the magnetic stand until the liquid is
	clear.
□11	Without disturbing the beads, remove and
	discard supernatant.
□12	Wash with 150 µl 70% EtOH.
	Wash again with 150 µl 70% EtOH.
	Use a 20 µl pipette to remove and discard
□ 14	residual EtOH.
□ 15	
	Remove from the magnetic stand.
	Add 30 µl Low TE to each well.
	Vortex briefly, and then centrifuge briefly.
☐ 19	Place on the magnetic stand and wait until the
13	liquid is clear (~5 minutes).
□20	Transfer 27 µl supernatant to a new plate.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

Check Libraries

- ☐ 1 Place the plate on the magnetic stand. Keep the plate on the stand while performing normalization and pooling.
- 2 Assess library quality.
- □ 3 Quantify the library.

Dilute Libraries to the Starting Concentration

- 1 Calculate the molarity value of the library or pooled libraries.
- Using the molarity value, calculate the volumes of Low TE and library needed to dilute libraries to the starting concentration.

Sequencing System	Starting Concentration (nM)	Final Loading Concentration (pM)
MiniSeq System	2	1.1–1.9
MiSeq System (v3 reagents)	2	7–9
NextSeq 550 and NextSeq 500	2	1.1–1.9

- ☐ 3 Dilute libraries using Low TE:
 - Libraries quantified as a pool—Dilute the pool to the starting concentration.
 - Libraries quantified individually—Dilute each library to the starting concentration. Add 10 µl each diluted library to a tube.
- ☐ 4 Dilute to the final loading concentration.

Equalize Libraries

1 Use the following steps to normalize library concentration without quantification using the AmpliSeq Library Equalizer for Illumina.

For Research Use Only. Not for use in diagnostic procedures.

Amplify Library

- ☐ 1 Remove the plate with purified libraries from the magnetic stand.
- 2 For each reaction, combine the following volumes.

Reagent	Volume (µI)
1X Lib Amp Mix (black cap)	45
10X Library Amp Primers (pink cap)	5

- Vortex briefly, and then centrifuge briefly.
- Add 50 µl amplification master mix to each library well.
- ☐ 5 Place on the thermal cycler, cover with a compression pad (if applicable), and run the EQUAL program.

Wash Equalizer Beads

- ☐ 1 For each reaction, combine the following volumes:
 - Equalizer Beads (7 µl)
 - Equalizer Wash Buffer (14 µl)
- Pipette to mix.
- Place on the magnetic stand until liquid is clear.
- Remove and discard all supernatant.
- Remove from the magnetic stand.
- For each reaction, add 7 µl Equalizer Wash Buffer. Pipette to resuspend.

Add Equalizer Capture

☐ 1 Briefly centrifuge the library plate to collect contents, and then unseal. ☐2 Place on the magnetic stand until liquid is clear. Transfer 45 µl of supernatant to a new plate. \square 3 Add 10 µl Equalizer Capture. ☐ 5 Seal the plate, vortex to mix, and then briefly centrifuge to collect contents.

☐ 6 Incubate at room temperature for 5 minutes.

Document # 100000039453 v06 February 2019 Page 6 of 7

For Research Use Only. Not for use in diagnostic procedures.

Perform Second Cleanup

∐1	Unseal the plate.
_2	Vortex or pipette washed Equalizer Beads to
	mix.
□3	Add 6 µl Equalizer Beads .
4	Seal the plate, vortex thoroughly, and then
	centrifuge briefly.
\square 5	Incubate at room temperature for 5 minutes.
□ 6	Place on the magnetic stand until liquid is
	clear.
\Box 7	Unseal the plate.
8	Remove and discard all supernatant.

Elute Library

□ 1	Remove the plate from the magnetic stand.
\square 2	Add 30 µl Equalizer Elution Buffer .
\square 3	Seal the plate, vortex thoroughly, and then
	centrifuge briefly.
$\square 4$	Elute the library by incubating on a thermal
	cycler at 45°C for 5 minutes.
\Box 5	Place on the magnetic stand until liquid is
	clear.
□6	Unseal the plate.
\Box 7	Transfer 27 µl supernatant to a new plate.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

Denature and Dilute Libraries

☐ 1 Denature and dilute libraries for loading on the sequencing instrument you are using.