illumına # TruSight Oncology 500 High Throughput Reference Guide ILLUMINA PROPRIETARY Document # 100000094853 v04 May 2025 For Research Use Only. Not for use in diagnostic procedures. This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document. The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s). FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY, AND WILL VOID ANY WARRANTY APPLICABLE TO THE PRODUCT(S). ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE). © 2025 Illumina, Inc. All rights reserved. All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, refer to www.illumina.com/company/legal.html. ## **Table of Contents** | Overview | 1 | |-----------------------------------|----| | Protocol | 3 | | Tips and Techniques | 4 | | Library Prep DNA Only Workflow | 6 | | Enrichment DNA Only Workflow | 7 | | Library Prep DNA and RNA Workflow | 8 | | Enrichment DNA and RNA Workflow | 9 | | Denature and Anneal RNA | 10 | | Synthesize First Strand cDNA | 11 | | Synthesize Second Strand cDNA | 12 | | Clean Up cDNA | 13 | | Fragment gDNA | 15 | | Perform End Repair and A-Tailing | 17 | | Ligate Adapters | 19 | | Clean Up Ligation | 20 | | Index PCR | 21 | | Set Up First Hybridization | 23 | | Capture Targets One | 25 | | Set Up Second Hybridization | 27 | | Capture Targets Two | 29 | | Amplify Enriched Library | 31 | | Clean Up Amplified Enriched Library | 33 | |---|----| | Quantify Libraries (Optional) | 34 | | Normalize Libraries | 35 | | Pool Libraries and Dilute to the Loading Concentration | 38 | | Consumables and Equipment | 39 | | Kit Contents | 39 | | TruSight Oncology 500 DNA/RNA High-Throughput (24 Samples) | 40 | | TruSight Oncology 500 DNA High-Throughput (48 Samples) | 42 | | TruSight Oncology 500 DNA/RNA High-Throughput (72 Samples) | 43 | | TruSight Oncology 500 DNA High-Throughput (144 Samples) | | | TruSight Oncology 500 High-Throughput Index Kits | | | TruSight Oncology 500 High-Throughput DNA/RNA Automation (32 Samples) | | | TruSight Oncology 500 High-Throughput DNA Automation (64 Samples) | | | TruSight Oncology 500 High-Throughput DNA Automation (72 Samples) | | | TruSight Oncology 500 High-Throughput Index Kits for Automation | | | Consumables and Equipment | 55 | | Consumables | | | Equipment (Pre-Amp) | 57 | | Equipment (Post-Amp) | 58 | | Resources and References | 59 | | Revision History | 60 | | NOVISION FIRSTON | UU | ## Overview The TruSight[™] Oncology 500 High Throughput (HT) protocol describes an enrichment-based approach to convert DNA and RNA extracted from formalin-fixed paraffin embedded (FFPE) tissue samples into libraries enriched for cancer-related genes that can be sequenced on Illumina[®] sequencing systems. TruSight Oncology 500 HT enables the preparation of 144 libraries from DNA, or a combination of DNA and RNA libraries. The kit is optimized to provide high sensitivity and specificity for low-frequency somatic variants across 523 genes. DNA biomarkers include the following: - Single nucleotide variants (SNVs) - Insertions - Deletions - Gene amplifications - Multinucleotide variants (MNVs) TruSight Oncology 500 HT also detects immunotherapy biomarkers for tumor mutational burden (Tmb) and microsatellite instability (Msi) in DNA. Fusions and splice variants are detected in RNA. ## **DNA/RNA Input Recommendations** Use a minimum of 40 ng DNA input and 80 ng RNA input with the TruSight Oncology 500 HT assay. Inputs lower than specified can decrease library yield and quality. Quantify the input nucleic acids before beginning the protocol. To obtain sufficient nucleic acid material, isolate nucleic acid from a minimum of 2 mm³ of FFPE tissue. Also, follow these guidelines for input: - Use a nucleic acid isolation method that produces high recovery yields, minimizes sample consumption, and preserves sample integrity. The QIAGEN AllPrep DNA/RNA FFPE Kit provides a high yield of nucleic acids. - For recommendations for obtaining sufficient nucleic acid material, refer to the TruSight Oncology 500 High Throughput support page on the Illumina support website. - Use a fluorometric quantification method that uses DNA/RNA binding dyes such as AccuClear (DNA) or QuantiFluor (RNA). ### Compatibility For information on sequencing compatibility and run settings, refer to the TruSight Oncology 500 HT support pages on the Illumina website. For read lengths, refer to the compatible products page on the TruSight Oncology 500 support page on the Illumina website. ### Sample Qualification For optimal performance, assess DNA and RNA sample quality before using the TruSight Oncology 500 HT assay. - DNA samples can be assessed using the TruSight FFPE QC Kit. - Use DNA samples that result in a delta Cq value ≤ 5. Samples with a delta Cq > 5 may result in decreased assay performance. - RNA samples can be assessed using Advanced Analytical Technologies Fragment Analyzer (Standard Sensitivity RNA Analysis Kit) or Agilent Technologies 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit). - Use RNA samples that result in a DV₂₀₀ value of ≥ 20%. Using samples with a DV₂₀₀ value < 20% may result in decreased assay performance. ### Reference Samples (Optional) - Use reference materials with known variant composition, such as Horizon Discovery HD753 (DNA) and Agilent Universal Human Reference RNA. The Agilent Universal Human Reference RNA is an intact RNA sample. Process the sample after the intact RNA procedure described in *Denature and*Anneal RNA on page 10. - Use RNase/DNase-free water as a no template control. Do not sequence the no template control. - Processing a reference sample or no template control reduces the total number of test samples that can be processed. ### **DNA Shearing Recommendations** The TruSight Oncology 500 HT assay is optimized to prepare libraries from gDNA that are fragmented to 90–250 bp. The assay is optimized using the Covaris E220evolution, LE220-plus, M220, ME220, ML230, or R230 Focused-ultrasonicator with the parameters provided in *Fragment gDNA* on page 15. Fragment size distribution can vary due to differences in sample quality and the sonication instrumentation used for fragmentation. Use the following guidelines for shearing. - Excessive bubbles or an air gap in the shearing tube can lead to incomplete shearing. - Load the gDNA into the Covaris tube slowly to avoid creating bubbles. - Centrifuge the LE220-plus, E220evolution, and R230 Covaris tube to collect the sample at the bottom of the tube before shearing. - When using the M220, ME220, or ML230 Covaris tube, slowly insert pipette tip into tube until tip is just below the pre-slit septum. - The recommended settings for the LE220-plus, E220evolution, and R230 instruments are designed for shearing in 130 µl microTUBEs (strip or plate). The recommended settings for the M220, ME220, and ML230 instruments are designed for use with Covaris microTUBE-50 (strip or single tube). - [Optional] Assess fragment size distribution of sheared samples using the Agilent DNA 1000 Kit with the Agilent Bioanalyzer 2100. ## Library Prep Automation (Optional) The TruSight Oncology 500 High Throughput kits are available in automation formats for use with third party liquid handling robots. Refer to *Kit Contents* on page 39 to determine the appropriate TruSight Oncology 500 High Throughput kit to order. Library prep automation methods are available from third party liquid handling robot vendors. Contact your preferred vendor for more information on TruSight Oncology 500 High Throughput library prep automation methods. ## Protocol This section describes the TruSight Oncology 500 HT protocol. - Review the complete sequencing workflow, from sample through analysis, to ensure compatibility of products and experiment parameters. - Before proceeding, confirm kit contents and make sure that you have the required consumables and equipment. - TruSight Oncology 500 HT kits do not include index anchors or indexes. - Follow the protocol in the order described, using the specified parameters. - Before beginning library preparation, record sample information and assign each sample a unique index. ## Prepare for Pooling If you plan to pool libraries, record information about your samples before starting library prep. Use a recording tool that is compatible with your sequencing system and library information. For compatibility information, refer to the TruSight Oncology 500 HT support page on the Illumina website or the support pages for your system. - For strategies on forming low plex, color-balanced pools, refer to the *Index Adapters Pooling Guide* (document # 100000041074). - For index adapter sequences and how to record them, refer to *Illumina Adapter Sequences* (document # 100000002694). ## Tips and Techniques ## **Protocol Continuity** - Review tips and techniques before starting the
protocol, as many critical techniques are listed only here and are not repeated in the protocol. - Follow the protocol in the order described using the specified parameters. - Unless a safe stopping point is specified in the protocol, proceed immediately to the next step. ## **Avoiding Cross-Contamination** - When adding or transferring samples or reagents, change tips between each well. - Use a unidirectional workflow when moving from pre-amp to post-amp areas. - To prevent amplification product or probe carryover, avoid returning to the pre-amp area after beginning work in the post-amp area. - When adding indexing primers, change tips between *each well*. - Change gloves if gloves come in contact with indexing primers, samples, or probes. - Clean work surfaces and equipment thoroughly before and after the procedure with an RNase/DNase inhibiting cleaner. ## Sealing the Plate - Always seal the plate before the following steps in the protocol: - Shaking steps - Vortexing steps - Centrifuge steps - Thermal cycling steps - Heated incubation steps - Long-term storage - Apply the adhesive seal to cover the plate and seal with a rubber roller, making sure that edges and wells are sealed. - Apply a new seal every time you cover a plate. - Use adhesive seals for shaking, vortexing, centrifuging, thermal cycling, heated incubations, and long-term storage. The seals are effective at -40°C to 110°C and suitable for skirted or semiskirted PCR plates. - If you observe droplets hanging on the inside sealed plate, centrifuge at 280 x g for 1 minute. #### Plate Transfers • When transferring volumes between plates, transfer the specified volume from each well of a plate to the corresponding well of the other plate. ## Centrifugation • When instructed to centrifuge the plate, centrifuge at 280 × g for 1 minute. ### Handling Reagents - Tightly recap all reagent tubes immediately after use to limit evaporation and prevent contamination. - Return reagents to the recommended storage conditions when they are no longer needed for the procedure. - Stability of the TruSight Oncology 500 HT Kit has been evaluated and performance demonstrated for up to four uses of the kit. - Master mix preparation tables include volume overage to make sure that there is sufficient volume per sample. ## **Handling Beads** - Do not freeze beads. - Pipette bead suspensions slowly. - Before use, allow the beads to come to room temperature. - Mix beads for 1 minute to ensure homogeneity. - If beads are aspirated into pipette tips, dispense back to the plate on the magnetic stand, and wait until the liquid is clear (~2 minutes). - When washing beads: - Use the specified magnetic stand for the plate. - Dispense liquid so that beads on the side of the wells are wetted. - Keep the plate on the magnetic stand until the instructions specify to remove it. - Do not agitate the plate while it is on the magnetic stand. Do not disturb the bead pellet. - When mixing beads with a pipette: - Use a suitable pipette and tip size for the volume you are mixing (for example, use a P200 for volumes from 20 µl to 200 µl). - Adjust the volume setting to ~50–75% of your sample volume. - Pipette with a slow, smooth action. - Avoid aggressive pipetting, splashing, and introducing bubbles. - Position the pipette tip above the pellet and dispense directly into the pellet to release beads from the well or tube. - Make sure that the bead pellet is fully in solution. (For example, for SMB pellets, the solution should look dark brown and have a homogenous consistency.) ## Library Prep DNA Only Workflow The following diagram illustrates the recommended DNA only library preparation workflow using a TruSight Oncology 500 HT kit. Safe stopping points are marked between steps. Hands-on and total times are approximate. Figure 1 TruSight Oncology 500 High Throughput DNA Only Workflow (Part 1) ## **Enrichment DNA Only Workflow** The following diagram illustrates the recommended DNA only enrichment workflow using a TruSight Oncology 500 HT kit. Safe stopping points are marked between steps. Hands-on and total times are approximate. Figure 2 TruSight Oncology 500 High Throughput DNA Only Workflow (Part 2) Day 1 (continued) Set Up First Hybridization Hands-on: 15 minutes Total: overnight Reagents: EHB, OPD2 Overnight Hybridization Day 2 Capture Targets One Hands-on: 60 minutes Total: 100 minutes Reagents: SMB, EEW, EE2, HP3, ET2 Set Up Second Hybridization Hands-on: 10 minutes Total: 1.5 - 4 hours Reagents: EHB, OPD2 Capture Targets Two Hands-on: 25 minutes Total: 60 minutes Reagents: SMB, RSB, EE2, HP3, ET2 Safe Stopping Point Amplify Enriched Library Hands-on: 5 minutes Total: 60 minutes Reagents: PPC3, EPM Clean Up Amplified Enriched Library Hands-on: 30 minutes Total: 40 minutes Reagents: SPB, RSB, 80% EtOH Safe Stopping Point Quantify Libraries (Optional) Normalize Libraries Hands-on: 40 minutes Total: 50 minutes Reagents: LNA1, LNB1, LNW1, HP3, LNS1, EE2 Safe Stopping Point Enrichment ## Library Prep DNA and RNA Workflow The following diagram illustrates the recommended DNA and RNA library preparation workflow using a TruSight Oncology 500 HT kit. RNA and DNA libraries can be prepared simultaneously. Safe stopping points are marked between steps. Hands-on and total times are approximate. Figure 3 TruSight Oncology 500 High Throughput DNA and RNA Workflow (Part 1) ## **Enrichment DNA and RNA Workflow** The following diagram illustrates the recommended DNA and RNA enrichment workflow using a TruSight Oncology 500 HT kit. Safe stopping points are marked between steps. Hands-on and total times are approximate. Figure 4 TruSight Oncology 500 High Throughput DNA and RNA Workflow (Part 2) Set Up First Hybridization Day 1 (continued) Hands-on: 15 minutes Total: overnight Reagents: EHB, OPR1/OPD2 Overnight Hybridization Day 2 Capture Targets One Hands-on: 60 minutes Total: 100 minutes Reagents: SMB, EEW, EE2, HP3, ET2 Set Up Second Hybridization Hands-on: 10 minutes Total: 1.5 - 4 hours Reagents: EHB, OPR1/OPD2 Capture Targets Two Hands-on: 25 minutes Total: 60 minutes Reagents: SMB, RSB, EE2, HP3, ET2 Safe Stopping Point Amplify Enriched Library Hands-on: 5 minutes Total: 60 minutes Reagents: PPC3, EPM Clean Up Amplified Enriched Library Hands-on: 30 minutes Total: 40 minutes Reagents: SPB, RSB, 80% EtOH Safe Stopping Point Quantify Libraries (Optional) Normalize Libraries Hands-on: 40 minutes Total: 50 minutes Reagents: LNA1, LNB1, LNW1, HP3, LNS1, EE2 Safe Stopping Point Enrichment ## Denature and Anneal RNA This process denatures purified RNA and primes the RNA with random hexamers in preparation for cDNA synthesis. #### Consumables - EPH3 (Elution, Primer, Fragmentation Mix) - FSM (First Strand Synthesis Mix) - RVT (Reverse Transcriptase) - Nuclease-free water - 96-well PCR plate - 1.7 ml microcentrifuge tube - Microseal 'B' adhesive seals ### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|----------------|--| | EPH3 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | FSM | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | RVT | -25°C to -15°C | Keep on ice. Centrifuge briefly and then pipette to mix. | - 2. Thaw extracted RNA samples on ice. - 3. Qualify and quantify the samples. Refer to *DNA/RNA Input Recommendations* on page 1 for more information. - 4. Pipette each RNA sample 10 times to mix and then centrifuge briefly. - 5. Use RNase/DNase-free water to prepare a minimum of 80 ng of each purified RNA sample in a final volume of 8.5 µl (9.4 ng/µl). - 6. Pipette to mix prepared RNA samples and then centrifuge briefly. - 7. Set prepared RNA samples on ice. - 8. Label the 96 well PCR plate CF (cDNA fragments) - 9. Save the following programs on the thermal cycler: - For FFPE or fragmented RNA, save the LQ-RNA program. - Choose the preheat lid option and set to 100°C - Set the reaction volume to 17 µl - 65°C for 5 minutes - Hold at 4°C - For cell line or intact RNA, save the HQ-RNA program. - Choose the preheat lid option and set to 100°C - Set the reaction volume to 17 µl - 94°C for 8 minutes - Hold at 4°C 1. Combine the appropriate volumes from the following table in a microcentrifuge tube to prepare the FSM+RVT Master Mix. | Master Mix
Component | 8 Samples
(µl) | 24 Samples
(µI) | 48 Samples
(µI) | 72 Samples
(µI) | |-------------------------|-------------------|--------------------|--------------------|--------------------| | FSM | 72 | 216 | 432 | 648 | | RVT | 8 | 24 | 48 | 72 | - 2. Pipette 10 times to mix and then place on ice until Synthesize First Strand cDNA on page 11. - 3. Add 8.5 µl of each RNA sample (9.4 ng/µl) to a unique well of the CF PCR plate. - 4. Add 8.5 µl EPH3 to each well. - 5. Apply Microseal 'B' to the CF PCR plate and shake the plate at 1200 rpm for 1 minute. - 6. Centrifuge the plate at 280 × g for 1 minute. - 7. Place the plate on the preprogrammed thermal cycler and run the LQ-RNA or HQ-RNA program. ## Synthesize First Strand cDNA This process reverse transcribes the RNA fragments primed with random hexamers into first strand cDNA using reverse transcriptase. ### **Consumables** - FSM+RVT Master Mix - Microseal 'B' adhesive seals ### Preparation 1. Save the following 1stSS program on the thermal cycler: - Choose the preheat lid option and set to 100°C - Set the reaction volume to 25 µl - 25°C for 10 minutes - 42°C for 15 minutes - 70°C for 15 minutes - Hold at 4°C - 1. Remove the CF PCR plate from the thermal cycler. - 2. Pipette to mix FSM+RVT Master Mix. - 3. Add 8 µl FSM+RVT Master Mix to each well. - 4. Discard any remaining master mix after use. - 5. Pipette to mix 5 times. - 6. Apply Microseal 'B' to the CF PCR plate and shake the plate at 1200 rpm for 1 minute. - 7. Centrifuge the plate at $280 \times g$ for 1 minute. - 8. Place the plate on the
preprogrammed thermal cycler and run the 1stSS program. ## Synthesize Second Strand cDNA This process removes the RNA template and synthesizes double-stranded cDNA. #### Consumables - SSM (Second Strand Mix) - Microseal 'B' adhesive seals #### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|----------------|---| | SSM | -25°C to -15°C | Thaw to room temperature. Invert 10 times to mix. Centrifuge briefly. | - 2. Save the following 2ndSS program on the thermal cycler with a heated lid. - i If the lid temperature cannot be set to 30°C, turn off the preheated lid heat option. - Choose the preheat lid option and set to 30°C - Set the reaction volume to 50 μl - 16°C for 25 minutes - Hold at 4°C - 1. Remove the CF PCR plate from the thermal cycler. - 2. Add 25 µl SSM to each well. - 3. Apply Microseal 'B' to the CF PCR plate and shake the plate at 1200 rpm for 1 minute. - 4. Place the plate on the preprogrammed thermal cycler and run the 2ndSS program. ## Clean Up cDNA This process uses SPB (Sample Purification Beads) to purify the cDNA from unwanted reaction components. The beads are washed twice with fresh 80% ethanol and the cDNA is eluted with RSB. #### Consumables - RSB (Resuspension Buffer) - SPB (Sample Purification Beads) - 96-well MIDI plate - [Optional] 96-well PCR plate - Freshly prepared 80% ethanol (EtOH) - Microseal 'B' adhesive seals #### **About Reagents** Aspirate and dispense SPB slowly due to the viscosity of the solution. ### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|---------------------------------|--| | RSB | 2°C to 8°C or
-25°C to -15°C | Bring to room temperature. If stored at -25°C to -15°C, thaw at room temperature and vortex before use. | | SPB | 2°C to 8°C | Bring to room temperature for at least 30 minutes. | - 2. Label a new 96-well MIDI plate BIND1. - 3. Select one of the following plate options. - Label a new 96-well MIDI plate PCF (Purified cDNA Fragments) to continue with library prep immediately after cleaning up cDNA. - Label a new 96 well PCR plate PCF (Purified cDNA Fragments) to store the plate after cleaning up cDNA. - 4. Prepare fresh 80% EtOH. #### Bind - 1. Remove the CF PCR plate from the thermal cycler. - 2. Vortex SPB for 1 minute to resuspend the beads. - 3. Add 90 µl SPB to each well of the BIND1 MIDI plate. - 4. Transfer 50 μl of each sample from the CF PCR plate to the corresponding well of the BIND1 MIDI plate. - 5. Apply Microseal 'B' to the BIND1 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 6. Incubate at room temperature for 5 minutes. - 7. Place the BIND1 MIDI plate on a magnetic stand for 5 minutes. - 8. Use a pipette to remove and discard all supernatant from each well. #### Wash - Wash beads as follows. - a. Keep on magnetic stand and add 200 µl fresh 80% ethanol to each well. - b. Wait 30 seconds. - c. Remove and discard all supernatant from each well. - 2. Wash beads a second time. - 3. Use a P20 pipette with fine tips to remove residual supernatant from each well. #### Elute - 1. Remove the BIND1 MIDI plate from the magnetic stand. - 2. Add 22 µl RSB to each well. - 3. Apply Microseal 'B' to the BIND1 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 4. Incubate at room temperature for 2 minutes. - 5. Place on a magnetic stand for 2 minutes. - 6. Transfer 20 µl eluate from each well of the BIND1 MIDI plate to the corresponding well of the PCF plate. - 7. Add 30 µl RSB to each sample well of the PCF plate, and then pipette at least 10 times to mix. - 8. Apply Microseal 'B' to the PCF plate. #### SAFE STOPPING POINT If you are stopping, make sure that the PCF PCR plate is sealed, and briefly centrifuge at $280 \times g$. Store at -25°C to -15°C for up to 7 days. ## Fragment gDNA This process fragments gDNA and generates 90–250 bp dsDNA fragments with 3' or 5' overhangs using a Covaris ultrasonicator. #### Consumables - TEB (TE Buffer) - [E220evo] Covaris 8 microTUBE Strip with foil seals - [ML230, ME220] Covaris microTUBE-50 AFA Fiber H Strip V2 - [M220] Covaris microTUBE-50 AFA Fiber Screw-Cap - [LE220-plus, R230] One of the following options: - Covaris 8 microTUBE Strip with foil seals - Covaris 96 microTUBE Plate with foil seals - 96-well MIDI plate - [Optional] 96-well PCR plate #### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|------------|---| | TEB | 2°C to 8°C | Bring to room temperature. Vortex to mix. | - 2. Turn on and set up the Covaris instrument according to manufacturer guidelines. - 3. Choose one of the following plate options: - Label a new 96 well MIDI plate LP (Library Preparation) if proceeding with library prep immediately after shearing gDNA. - Label a new 96 well PCR plate LP (Library Preparation) to store the plate after shearing gDNA. - 4. Thaw gDNA samples at room temperature. - 5. Qualify and quantify the samples. Refer to *DNA/RNA Input Recommendations* on page 1 for more information. - 6. Pipette each gDNA sample 10 times to mix and then centrifuge briefly. - 7. Use TEB to prepare a minimum of 40 ng of each purified gDNA sample in a final volume of 12 μ I (3.3 ng/ μ I). - 1. Add 12 µl of each prepared gDNA sample into a separate well of a Covaris 8 microTUBE Strip, 96 microTUBE Plate, or microTUBE-50. - 2. Add 40 µl TEB to each sample. - 3. If you are using a microTUBE Strip or microTUBE Plate, prepare as follows. - a. Fill any unused wells with 52 µl water. If you are using a microTUBE Plate, only fill the unused wells within the columns that contain samples. - b. Pipette to mix. - Avoid introducing excessive bubbles or air gaps in the shearing tube as incomplete shearing may result. - c. Seal it with the foil seal. - d. Centrifuge briefly. 4. If you are using the Covaris E220 *evolution*, LE220-plus, M220, ME220, ML 230, or R230 model, fragment the gDNA using the following settings. | | F000 | 1.5000 | | | | | |------------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-----------------------| | Setting | E220
evolution | LE220-
plus | M220 | ME220 | ML230 | R230 | | Peak Incident
Power | 175 watts | 450 watts | 50 watts | 50 watts | 350 watts | 450 watts | | Duty Factor | 10% | 30% | 20% | 30% | 25% | 25% | | Cycles per
Burst | 200 | 200 | 1000 | 1000 | 1000 | 600 | | Pulse repeats | Not
applicable | Not
applicable | 20 | 20 | 32 | 32 | | Pulse delay
time | Not
applicable | Not
applicable | 10
seconds | 10
seconds | 40
seconds | 10 seconds | | Shearing
Time | 280
seconds | 250
seconds | 200
seconds* | 200
seconds* | 320
seconds** | 320
seconds** | | Temperature | 7°C | 7°C | 20°C | 12°C | 12°C | 10°C | | Dithering | Not
applicable | Not
applicable | Not
applicable | Not
applicable | 3 mm Y @
20 mm/s | 1.5 mm Y
@ 10 mm/s | | Other | Intensifier | Not
applicable | Not
applicable | Wave
guide | Not
applicable | Not
applicable | ^{*}The shearing time of 200 seconds consists of 10-second bursts with 20 repeats. - 5. If you are using a microTUBE Strip or microTUBE Plate, centrifuge briefly to collect droplets. - 6. Transfer 50 µl of each sheared gDNA sample to an empty well of the LP plate. - A P20 pipette with fine tips can be used when transferring sheared gDNA sample to the LP plate (pipette $20 \mu l + 20 \mu l + 10 \mu l$). #### **SAFE STOPPING POINT** If you are stopping, apply Microseal 'B' to the LP PCR plate and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 7 days. ## Perform End Repair and A-Tailing This process converts the overhangs resulting from fragmentation into blunt ends using an End Repair A-Tailing master mix (ERA1). The 3' to 5' exonuclease activity of this mix removes the 3' overhangs and the 5' to 3' polymerase activity fills in the 5' overhangs. The 3' ends are A-tailed during this reaction to prevent them from ligating to each other during the adapter ligation reaction. ^{**}The shearing time of 320 seconds consists of 10-second bursts with 32 repeats. #### Consumables - ERA1-A (End Repair A-tailing Enzyme Mix 1) - ERA1-B (End Repair A-tailing Buffer 1) - 1.7 ml microcentrifuge tube - 96-well MIDI plate - Microseal 'B' adhesive seals ### Preparation 1. Prepare the following consumables. | Reagent | Storage | Instructions | |---------|----------------|---| | ERA1-A | -25°C to -15°C | Keep on ice. Centrifuge briefly, and then pipette to mix. | | ERA1-B | -25°C to -15°C | Thaw to room temperature. Centrifuge briefly, and then pipette to mix. If precipitates are present, warm the tube in your hands, and then pipette to mix until the crystals dissolve. | - 2. Bring sheared gDNA and/or any cDNA to room temperature. - 3. If the PCF or LP PCR plates were stored at -25°C to -15°C, thaw at room temperature, pipette to mix, and then centrifuge. - 4. Transfer 50 μl of each cDNA and/or sheared gDNA sample from the PCR plate to unique wells of a new 96-well MIDI plate. - 5. Label the MIDI plate LP2 (Library Preparation 2). - 6. Preheat two Hybex incubators with MIDI heat block inserts as follows. - Preheat the first incubator to 30°C. - Preheat the second incubator to 65°C. - 7. Prepare an ice bucket. #### Procedure 1. Combine the appropriate volumes from the following table in a microcentrifuge tube to prepare ERA1 Master Mix. | Master Mix
Component | 8 Samples
(µI) | 24 Samples
(µI) | 48 Samples
(μΙ) | 72 Samples
(µI) |
-------------------------|-------------------|--------------------|--------------------|--------------------| | ERA1-B | 69 | 207 | 415 | 622 | | ERA1-A | 27 | 81 | 161 | 242 | - 2. Pipette 10 times to mix, and then place ERA1 Master Mix on ice. - 3. Add 10 µl ERA1 Master Mix to each sample in the LP2 MIDI plate. - 4. Discard any remaining master mix after use. - 5. Apply Microseal 'B' to the LP2 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 6. Incubate at 30°C for 30 minutes. - 7. Immediately transfer to another incubator at 65°C and incubate for 20 minutes. - 8. Place the LP2 MIDI plate on ice for 5 minutes. ## Ligate Adapters This process ligates adapters to the ends of the cDNA and/or gDNA fragments. UMI DNA index anchors (adapters) that contain unique molecular identifiers are ligated to both cDNA and gDNA fragments. #### Consumables - ALB1 (Adapter Ligation Buffer 1) - LIG3 (DNA Ligase 3) - STL (Stop Ligation Buffer) - UMI DIA (Unique Molecular Identifier DNA Index Anchors) - Microseal 'B' adhesive seals #### **About Reagents** ALB1 is highly viscous. Pipette slowly to avoid forming bubbles. ### Preparation 1. Prepare the following consumables: | Item | Storage | Instructions | |---------|----------------|---| | ALB1 | -25°C to -15°C | Thaw to room temperature. Vortex ≥ 10 seconds to resuspend. Centrifuge briefly. | | LIG3 | -25°C to -15°C | Keep on ice.
Centrifuge briefly, and then pipette to mix. | | STL | -25°C to -15°C | Thaw and bring to room temperature. Vortex to resuspend. Centrifuge briefly. | | UMI DIA | -25°C to -15°C | Thaw to room temperature. Centrifuge briefly. | **i** Each well of the UMI DIA plate contains enough volume for one use only. - 1. Add 60 µl ALB1 to each well. - 2. Add 5 µl LIG3 to each well. - 3. Pipette UMI DIA to mix. Pierce the foil seal on the UMI DIA plate with a new pipette tip for each well for only the number of samples being processed. - 4. Add 10 µl UMI DIA to each well. - 5. Apply Microseal 'B' to the LP2 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 6. Incubate at room temperature for 30 minutes. - 7. Add 5 µl STL to each well. - 8. Apply Microseal 'B' to the LP2 MIDI plate and shake the plate at 1800 rpm for 2 minutes. ## Clean Up Ligation This process uses SPB to purify the gDNA and cDNA fragments and remove unwanted products, such as unligated adapters. The beads are washed twice with fresh 80% ethanol and the product is eluted with RSB. ## Consumables - RSB (Resuspension Buffer) - SPB (Sample Purification Beads) - Freshly prepared 80% ethanol (EtOH) - · Microseal 'B' adhesive seals - 96-well PCR plate #### **About Reagents** Aspirate and dispense SPB slowly due to the viscosity of the solution. ### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|------------------------------|--| | RSB | 2°C to 8°C
-25°C to -15°C | Bring to room temperature. If stored at -25°C to -15°C, thaw to room temperature and vortex before use. | | SPB | 2°C to 8°C | Bring to room temperature for at least 30 minutes. | 2. Label a new 96-well PCR plate LS (Library Samples). 3. Prepare fresh 80% EtOH. ### **Procedure** #### Bind - 1. Vortex SPB for 1 minute to resuspend the beads. - 2. Add 112 µl SPB to each well of the LP2 MIDI plate. - 3. Apply Microseal 'B' to the LP2 MIDI plate and shake at 1800 rpm for 2 minutes. - 4. Incubate at room temperature for 5 minutes. - 5. Place the LP2 MIDI plate on the magnetic stand for 10 minutes. - 6. Use a pipette to remove and discard all supernatant from each well. #### Wash - 1. Wash beads as follows. - a. Keep on magnetic stand and add 200 µl fresh 80% ethanol to each well. - b. Wait 30 seconds. - c. Remove and discard all supernatant from each well. - 2. Wash beads a second time. - 3. Use a P20 pipette with fine tips to remove residual supernatant from each well. #### Elute - 1. Remove the LP2 MIDI plate from the magnetic stand. - 2. Add 22.5 µl RSB to each well. - 3. Apply Microseal 'B' to the LP2 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 4. Incubate at room temperature for 2 minutes. - 5. Place on a magnetic stand for 2 minutes. - 6. Transfer 20 µl of each eluate from the LP2 MIDI plate to the corresponding well of the LS PCR plate. ## Index PCR In this step, library fragments are amplified using primers that add index sequences for sample multiplexing. The resulting product contains the complete library of cDNA and DNA fragments flanked by index sequences and adapters required for cluster generation. #### Consumables - EPM (Enhanced PCR Mix) - UDPxxxx (DNA/RNA Unique Dual (UD) Indexes) - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. ## Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|----------------|---| | EPM | -25°C to -15°C | Thaw on ice. Vortex to resuspend. Centrifuge briefly. | | UDPxxxx | -25°C to -15°C | Thaw to room temperature. Centrifuge briefly. | - **i** Each well of the index plate contains a unique index with enough volume for one use only. - 2. Assign one UDPxxxx index per library (xxxx = index primer number). When sequencing multiple libraries on a single flow cell or flow cell lane, assign a different index to each sample library. Record sample layout orientation and the indexes for each sample library. - 3. In the post-amp area, save the following I-PCR program on the thermal cycler: - Choose the preheat lid option and set to 100°C - Set the reaction volume to 50 µl - 98°C for 30 seconds - 15 cycles of: - 98°C for 10 seconds - 60°C for 30 seconds - 72°C for 30 seconds - 72°C for 5 minutes - Hold at 10°C #### Procedure - 1. Pipette to mix UDP. - Pierce the foil seal on the UD index plate with a new pipette tip for each well for only the number of samples being processed. - 2. Add 10 µl index (UDPxxxx) to each sample well of the LS plate. - 3. Add 20 µl EPM to each well. - 4. Apply Microseal 'B' to the LS PCR plate and shake the plate at 1200 rpm for 1 minute. - 5. Transfer to the post-PCR area. - 6. Centrifuge the plate at 280 × g for 1 minute. - 7. Place the plate on the preprogrammed thermal cycler and run the I-PCR program. - 8. Relabel the plate ALS (Amplified Library Samples). #### SAFE STOPPING POINT If you are stopping, make sure that the ALS plate is sealed, and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 7 days. ## Set Up First Hybridization During this process, a pool of oligos specific to 523 genes targeted by TruSight Oncology 500 HT hybridize to DNA and/or RNA libraries prepared in *Index PCR* on page 21. Enrichment of targeted regions requires two hybridization steps. In this step, the first hybridization, oligos hybridize to the DNA and RNA libraries overnight (8–24 hours). #### Consumables - EHB (Enrichment Hybridization Buffer) - OPD2 (Oncology DNA Probe Pool 2) - OPR1 (Oncology RNA Probe Pool 1) - 96-well PCR plate - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. #### **About Reagents** - Use OPD2 for DNA libraries only. - Use OPR1 for RNA libraries only. ## Preparation 1. Prepare the following consumables. | Reagent | Storage | Instructions | |---------|----------------|--| | ЕНВ | -25°C to -15°C | Thaw to room temperature. Centrifuge briefly and then vortex to mix. Inspect for precipitates. If precipitates are present, vortex until cloudiness or crystals are dissolved. | | OPD2 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | OPR1 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | - 2. If the ALS PCR plate was stored at -25°C to -15°C, perform the following steps: - a. Thaw at room temperature. - b. Centrifuge at 280 × g for 1 minute. - c. Pipette to mix. - 3. Label a new 96-well PCR plate HYB1 (Hybridization 1). - 4. Save the following HYB1 program on the thermal cycler: - Choose the preheat lid option and set to 100°C - Set the reaction volume to 50 µl - 95°C for 10 minutes - 85°C for 2.5 minutes - 75°C for 2.5 minutes - 65°C for 2.5 minutes - Hold at 57°C ### Procedure - 1. Transfer 20 µl of each library from the ALS PCR plate to the HYB1 PCR plate. - 2. Add 25 µl EHB to each well. - 3. Add the appropriate probe. - For DNA libraries, add 5 µl OPD2. - For RNA libraries, add 5 µl OPR1. - 4. Apply Microseal 'B' to the HYB1 PCR plate and shake the plate at 1200 rpm for 2 minutes. 5. Place on the
preprogrammed thermal cycler and run the HYB1 program. Hold at 57°C for 8-24 hours to hybridize. ## Capture Targets One This step uses SMB (Streptavidin Magnetic Beads) to capture probes hybridized to the targeted regions of interest. Three heated washes using EEW remove nonspecific DNA binding from the beads. The enriched library is then eluted from the beads and prepared for a second round of hybridization. #### Consumables - EE2 (Enrichment Elution 2) - EEW (Enhanced Enrichment Wash) - ET2 (Elute Target Buffer 2) - HP3 (2 N NaOH) - SMB (Streptavidin Magnetic Beads) - 1.7 ml microcentrifuge tube - 96-well MIDI plate - 96-well PCR plate - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. #### **About Reagents** • Make sure to use **SMB** and *not* **SPB** for this procedure. ## Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|----------------|--| | EE2 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | EEW | -25°C to -15°C | Thaw to room temperature. Vortex for 1 minute to resuspend. | | ET2 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. Centrifuge briefly. | | HP3 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. Centrifuge briefly. | | SMB | 2°C to 8°C | Bring to room temperature for 30 minutes and vortex to resuspend. If precipitate or the bead pellet is present, make sure to reach room temperature, pipette up and down to release the pellet, and then vortex to resuspend. | - 2. Preheat a Hybex incubator with MIDI heat block insert to 57°C. - 3. Label a new 96-well MIDI plate CAP1 (Capture 1). - 4. Label a new 96-well PCR plate ELU1 (Elution 1). ### **Procedure** ### **Bind** - 1. Remove the HYB1 PCR plate from the thermal cycler. - 2. Vortex SMB for 1 minute to resuspend the beads. - 3. Add 150 µl SMB to each well of the CAP1 MIDI plate. - 4. Transfer 50 μl of each library from the HYB1 PCR plate to the corresponding well of the CAP1 MIDI plate. - 5. Apply Microseal 'B' to the CAP1 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 6. Incubate in a Hybex incubator at 57°C for 25 minutes. - 7. Place on a magnetic stand for 2 minutes. - 8. While on the magnetic stand, remove and discard the supernatant from each well. #### Wash 1. Wash beads as follows: - a. Remove the CAP1 MIDI plate from the magnetic stand and add 200 µl EEW to each well. - b. Pipette to mix 10 times. - c. Apply Microseal 'B' and shake the plate at 1800 rpm for 4 minutes. If the bead pellet is still present, remove the Microseal and pipette to mix. Make sure that all beads are resuspended, and then apply a new Microseal 'B'. - d. Incubate in a Hybex incubator at 57°C for 5 minutes. - e. Place on a magnetic stand for 2 minutes. - f. While on the magnetic stand, remove and discard all supernatant from each well. - Wash beads a second time. - 3. Wash beads a third time. - 4. Use a P20 pipette with fine tips to remove any residual supernatant from each well. #### Elute 1. Combine the following volumes in a microcentrifuge tube to prepare the EE2+HP3 Elution Mix: | Elution Mix
Component | 8 Libraries
(µI) | 24 Libraries
(µI) | 48 Libraries
(µI) | 72 Libraries
(µI) | |--------------------------|---------------------|----------------------|----------------------|----------------------| | EE2 | 171 | 512 | 1024 | 1536 | | HP3 | 9 | 27 | 55 | 82 | - 2. Vortex briefly to mix. - 3. Remove the CAP1 MIDI plate from the magnetic stand. - 4. Carefully add 17 µl EE2+HP3 Elution Mix to each sample pellet. - 5. Discard remaining elution mix after use. - 6. Apply Microseal 'B' to the CAP1 MIDI plate and shake the plate at 1800 rpm for 2 minutes. - 7. Place on a magnetic stand for 2 minutes. - Carefully transfer 15 µl eluate from each well of the CAP1 MIDI plate to the ELU1 PCR plate. - 9. Add 5 µl ET2 to each eluate in the ELU1 PCR plate. - 10. Apply Microseal 'B' to the ELU1 PCR plate and shake the plate at 1200 rpm for 2 minutes. ## Set Up Second Hybridization This step binds targeted regions of the enriched DNA libraries with capture probes a second time. The second hybridization ensures high specificity of the captured regions. To ensure optimal enrichment of libraries, perform the second hybridization step for 1.5–4 hours. #### Consumables EHB (Enrichment Hybridization Buffer) - OPD2 (Oncology DNA Probe Pool 2) - OPR1 (Oncology RNA Probe Pool 1) - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. ### **About Reagents** - Use OPD2 for DNA libraries only. - Use OPR1 for RNA libraries only. ### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|----------------|--| | ЕНВ | -25°C to -15°C | Thaw to room temperature. Centrifuge briefly and then vortex to mix. If precipitates are present, vortex until cloudiness or crystals are dissolved. | | OPD2 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | OPR1 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | - 2. Save the following HYB2 program on the thermal cycler: - Choose the preheat lid option and set to 100°C - Set the reaction volume to 50 μl - 95°C for 10 minutes - 85°C for 2.5 minutes - 75°C for 2.5 minutes - 65°C for 2.5 minutes - Hold at 57°C - 1. Add 25 µl EHB to each well of the ELU1 PCR plate. - 2. Add the appropriate probe to each well. - For DNA libraries, add 5 µl OPD2. - For RNA libraries, add 5 µl OPR1. - 3. Apply Microseal 'B' to the ELU1 PCR plate and shake the plate at 1200 rpm for 2 minutes. - 4. Place on the preprogrammed thermal cycler and run the HYB2 program. Hybridize at 57°C for 1.5–4 hours. ## Capture Targets Two This step uses SMB (Streptavidin Magnetic Beads) to capture probes hybridized to the targeted regions of interest. RSB is used to rinse the captured libraries and remove nonspecific binding from the beads. The enriched library is then eluted from the beads and prepared for sequencing. #### Consumables - EE2 (Enrichment Elution 2) - ET2 (Elute Target Buffer 2) - HP3 (2 N NaOH) - RSB (Resuspension Buffer) - SMB (Streptavidin Magnetic Beads) - 1.7 ml microcentrifuge tube - [Optional] 15 ml conical tubes - 96-well MIDI plate - 96-well PCR plate - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. #### **About Reagents** Make sure to use SMB and not SPB for this procedure. ## Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | |---------|---------------------------------|--| | EE2 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | ET2 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. Centrifuge briefly. | | HP3 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. Centrifuge briefly. | | RSB | 2°C to 8°C
or -25°C to -15°C | Bring to room temperature. If stored at -25°C to -15°C, thaw at room temperature and vortex before use. | | SMB | 2°C to 8°C | Bring to room temperature for 30 minutes and vortex to resuspend. If precipitate or the bead pellet is present, make sure to reach room temperature, pipette up and down to release the pellet, and then vortex to resuspend. | - 2. Preheat a Hybex incubator with MIDI heat block insert to 57°C. - 3. Label a new 96-well MIDI plate CAP2 (Capture 2). - 4. Label a new 96-well PCR plate ELU2 (Elution 2). ### **Procedure** #### Bind - 1. Remove the ELU1 PCR plate from the thermal cycler. - 2. Vortex SMB for 1 minute to resuspend the beads. - 3. Add 150 µl SMB to each well of the CAP2 MIDI plate. - 4. Transfer 50 μl of each library from the ELU1 PCR plate to the corresponding well of the CAP2 MIDI plate. - 5. Apply
Microseal 'B' to the CAP2 MIDI plate and shake at 1800 rpm for 2 minutes. - 6. Incubate in a Hybex incubator at 57°C for 25 minutes. - 7. Place on a magnetic stand for 2 minutes. - 8. While on the magnetic stand, carefully remove and discard the supernatant from each well. #### Wash - 1. Wash beads as follows. - a. Remove the CAP2 MIDI plate from the magnetic stand. - b. Add 200 µl RSB to each well. - c. Apply Microseal 'B' to the CAP2 MIDI plate and shake the plate at 1800 rpm for 4 minutes. If the bead pellet is still present, remove the Microseal and pipette to mix. Make sure that all beads are resuspended, and then apply a new Microseal 'B'. - d. Place on a magnetic stand for 2 minutes. - e. While on the magnetic stand, use a pipette to carefully remove and discard the supernatant. - 2. Use a P20 pipette with fine tips to remove any residual supernatant from each well. #### Elute 1. Combine the following volumes to prepare the EE2+HP3 Elution Mix: | Elution Mix
Component | 8 Libraries
(µI) | 24 Libraries
(µI) | 48 Libraries
(µI) | 72 Libraries
(µI) | |--------------------------|---------------------|----------------------|----------------------|----------------------| | EE2 | 209 | 627 | 1254 | 1881 | | HP3 | 11 | 33 | 66 | 99 | - 2. Vortex to mix. - 3. Remove the CAP2 MIDI plate from the magnetic stand. - 4. Carefully add 22 µl EE2+HP3 Elution Mix to each sample pellet. - 5. Discard remaining elution mix after use. - 6. Apply Microseal 'B' and shake the plate at 1800 rpm for 2 minutes. - 7. Place on a magnetic stand for 2 minutes. - 8. Transfer 20 µl eluate from each well of the CAP2 MIDI plate to the ELU2 PCR plate. - 9. Add 5 µl ET2 to each eluate in the ELU2 PCR plate. - 10. Apply Microseal 'B' to the ELU2 PCR plate and shake the ELU2 PCR plate at 1200 rpm for 2 minutes. #### SAFE STOPPING POINT If you are stopping, make sure that the ELU2 plate is sealed and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 7 days. ## **Amplify Enriched Library** This step uses primers to amplify enriched libraries. #### Consumables - EPM (Enhanced PCR Mix) - PPC3 (PCR Primer Cocktail 3) - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. ### Preparation 1. Prepare the following consumables. | Reagent | Storage | Instructions | |---------|----------------|--| | EPM | -25°C to -15°C | Thaw on ice. Vortex to resuspend. Centrifuge briefly. | | PPC3 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | - 2. If the ELU2 plate was stored at -25°C to -15°C, thaw at room temperature, pipette to mix, and then centrifuge. - 3. Save the following EL-PCR program on the thermal cycler: - Choose the preheat lid option and set to 100°C - Set the reaction volume to 50 μl - 98°C for 30 seconds - 18 cycles of: - 98°C for 10 seconds - 60°C for 30 seconds - 72°C for 30 seconds - 72°C for 5 minutes - Hold at 10°C #### Procedure 1. Add 5 µl PPC3 to each well of the ELU2 PCR plate. - 2. Add 20 µl EPM to each well. - 3. Apply Microseal 'B' and shake the ELU2 PCR plate at 1200 rpm for 2 minutes. - 4. Centrifuge at 280 × g for one minute. - 5. Place on the preprogrammed thermal cycler and run the EL-PCR program. # Clean Up Amplified Enriched Library This step uses SPB (Sample Purification Beads) to purify the enriched library from unwanted reaction components. ### **Consumables** - RSB (Resuspension Buffer) - SPB (Sample Purification Beads) - Freshly prepared 80% ethanol (EtOH) - 96-well MIDI plate - 96-well PCR plate - Microseal 'B' adhesive seals #### **About Reagents** Aspirate and dispense SPB slowly due to the viscosity of the solution. ### Preparation 1. Prepare the following consumables: | Item | Storage | Instructions | |------|---------------------------------|--| | RSB | 2°C to 8°C
or -25°C to -15°C | Bring to room temperature. If stored at -25°C to -15°C, thaw at room temperature and vortex before use. | | SPB | 2°C to 8°C | Bring to room temperature for 30 minutes. | - 2. Label a new 96-well MIDI plate BIND2. - 3. Label a new 96-well PCR plate PL (Purified Libraries). - 4. Prepare fresh 80% EtOH. #### **Procedure** #### Bind 1. Remove the ELU2 PCR plate from the thermal cycler. - 2. Vortex SPB for 1 minute to resuspend the beads. - 3. Add 110 µl SPB to each well of the BIND2 MIDI plate. - 4. Transfer 50 μl of each library from the ELU2 PCR plate to the corresponding well of the BIND2 MIDI plate. - 5. Apply Microseal 'B' to the BIND2 MIDI plate and shake at 1800 rpm for 2 minutes. - 6. Incubate at room temperature for 5 minutes. - 7. Place the BIND2 MIDI plate on magnetic stand for 5 minutes. - 8. While on the magnetic stand, remove and discard all supernatant from each well. #### Wash - 1. Wash beads as follows. - a. Keep on magnetic stand and add 200 µl fresh 80% ethanol to each well. - b. Wait 30 seconds. - c. Remove and discard all supernatant from each well. - Wash beads a second time. - 3. Use a P20 pipette with fine tips to remove residual supernatant from each well. #### Elute - 1. Remove the BIND2 MIDI plate from the magnetic stand. - 2. Add 32 µl RSB to each well. - 3. Apply Microseal 'B' and shake at 1800 rpm for 2 minutes. - 4. Incubate at room temperature for 2 minutes. - 5. Place on a magnetic stand for 2 minutes. - 6. Transfer 30 µl of each eluate from the BIND2 MIDI plate to the corresponding well of the PL PCR plate. #### SAFE STOPPING POINT If you are stopping, apply Microseal 'B' to the PL PCR plate and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 30 days. # **Quantify Libraries (Optional)** Accurately quantify to make sure that there is sufficient library available for clustering on the flow cell. Use a fluorometric quantification method (user-supplied) to assess the quantity of enriched libraries before library normalization. Efficient bead-based library normalization requires ≥ 3 ng/ μ l of each library. The AccuClear Ultra High Sensitivity dsDNA Quantitation Kit has been demonstrated to be effective for quantifying libraries in this protocol. ### Recommended Guidelines (AccuClear) - 1. Combine 6 µl DNA standard with 44 µl RSB to dilute DNA standard to 3 ng/µl. - 2. Use RSB as blank. - 3. Run the diluted AccuClear DNA standard and blanks in triplicate. - 4. Run libraries in single replicates. - 5. Determine the average relative fluorescence unit (RFU) for DNA standard and blank. - 6. Calculate the Normalized Standard RFU using the following formula. - Average Standard RFU Average Blank RFU = Normalized Standard RFU - 7. Calculate the Normalized RFU for each library using the following formula. - Library RFU Average Blank RFU = Normalized RFU for each library ### **Assess Quantity** Assess the resulting Normalized RFU for each library against the following criteria. | Fluorescence
Measurement | Recommendation | |---|---| | ≤ Average Blank RFU | Repeat library preparation and enrichment if purified DNA or RNA sample meets quantity and quality specifications. | | > Average Blank RFU
(and) < Normalized
Standard RFU | Proceed to <i>Normalize Libraries</i> on page 35. Note: Using libraries with RFU below the Normalized Standard RFU might not yield adequate sequencing results to confidently call variants that can be present in the sample. | | ≥ Normalized
Standard RFU | Proceed to Normalize Libraries on page 35. | ## Normalize Libraries This process uses bead-based normalization to normalize the quantity of each library to ensure a uniform library representation in the sequencing pool. #### Consumables - EE2 (Enrichment Elution 2) - HP3 (2 N NaOH) - LNA1 (Library Normalization Additives 1) - LNB1 (Library Normalization Beads 1) - LNS1 (Library Normalization Storage Buffer 1) - LNW1 (Library Normalization Wash 1) - 1.7 ml microcentrifuge tubes - [Optional] 15 ml conical tubes - 96-well MIDI plate - 96-well PCR plate - Microseal 'B' adhesive seals - This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Ventilation should be appropriate for handling of hazardous materials in reagents. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, refer to the SDS at support.illumina.com/sds.html. #### **About Reagents** Aspirate and dispense LNB1 slowly due to the viscosity of the solution. ### Preparation 1. Prepare the following consumables: | Reagent | Storage | Instructions | | |---------|----------------|--|--| | EE2 | -25°C to -15°C | Thaw to room temperature. Vortex to resuspend. Centrifuge briefly. | | | LNA1 |
-25°C to -15°C | Thaw to room temperature. Vortex to resuspend. | | | HP3 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. Centrifuge briefly. | | | LNB1 | 2°C to 8°C | Bring to room temperature for at least 30 minutes. Pipette LNB1 pellet up and down to resuspend. | | | LNS1 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. | | | LNW1 | 2°C to 8°C | Bring to room temperature. Vortex to resuspend. | | - 2. If the PL PCR plate was stored at -25°C to -15°C, prepare it as follows. - a. Thaw at room temperature. - b. Centrifuge at 280 × g for 1 minute. - c. Pipette to mix. - 3. Label a new 96-well MIDI plate BBN (Bead-Based Normalization). - 4. Label a new 96-well PCR plate NL (Normalized Libraries). #### Procedure - Pulse vortex LNB1 tube for 1 minute at maximum speed. Invert LNB1 tube to make sure all beads are resuspended. If a bead pellet remains, repeat vortexing step. - 2. Using a P1000 pipette set at 800 µl, pipette LNB1 up and down 10 times to mix. - It is critical to completely resuspend the bead pellet at the bottom of the tube. Resuspension is essential to achieve consistent cluster density. - 3. Combine the following reagents to create LNA1+LNB1 Master Mix: | Master Mix Component | 8 Libraries (µI) | 24 Libraries | 48 Libraries | 72 Libraries | |----------------------|------------------|--------------|--------------|--------------| | LNA1 | 352 | 1055 | 2110 | 3166 | | LNB1 | 64 | 192 | 384 | 577 | 4. Combine the following reagents in a new microcentrifuge tube to create a fresh EE2+HP3 Elution Mix: | Elution Mix
Component | 8 Libraries
(µI) | 24 Libraries
(µI) | 48 Libraries
(µI) | 72 Libraries
(µI) | |--------------------------|---------------------|----------------------|----------------------|----------------------| | EE2 | 304 | 912 | 1824 | 2736 | | HP3 | 16 | 48 | 96 | 144 | 5. Vortex to mix. #### Bind - 1. Vortex LNA1+LNB1 Master Mix. - 2. Add 45 µl LNA1+LNB1 Master Mix to each well of the BBN MIDI plate. - 3. Add 20 µl of each library from the PL PCR plate to the corresponding well of the BBN MIDI plate. - 4. Apply Microseal 'B' to the BBN MIDI plate and shake at 1800 rpm for 30 minutes. - 5. Place the plate on a magnetic stand for 2 minutes. - 6. Remove and discard all supernatant from each well. #### Wash - 1. Wash beads as follows. - a. Remove the BBN MIDI plate from the magnetic stand and add 45 μ l LNW1 to each well. - b. Apply Microseal 'B' and shake at 1800 rpm for 5 minutes. - c. Place on a magnetic stand for 2 minutes. - d. Remove and discard all supernatant from each well. - 2. Wash a second time. - 3. Use a P20 pipette with fine tips to remove any residual supernatant from each well. #### Elute - 1. Remove the BBN MIDI plate from the magnetic stand. - 2. Vortex EE2+HP3 Elution Mix and then centrifuge briefly. - 3. Carefully add 32 µl EE2+HP3 Elution Mix to each well. - 4. Discard remaining elution mix after use. - 5. Apply Microseal 'B' to the BBN MIDI plate and shake at 1800 rpm for 2 minutes. - 6. Place on a magnetic stand for 2 minutes. - 7. Transfer 30 µl of each eluate from the BBN MIDI plate to the corresponding well of the NL PCR plate. - 8. Add 30 µl LNS1 to each library in the NL PCR plate. - 9. Pipette up and down five times to mix. #### SAFE STOPPING POINT If you are stopping, apply Microseal 'B' to the NL PCR plate and briefly centrifuge at $280 \times g$. Store at -25° C to -15° C for up to 30 days. # Pool Libraries and Dilute to the Loading Concentration 1. See the denature and dilute libraries guide for your sequencing system to pool, denature, and dilute libraries to the loading concentration. # Consumables and Equipment The protocol assumes that you have reviewed the contents of this section, confirmed protocol contents, and obtained all required consumables and equipment. ## Kit Contents Make sure that you have the reagents identified in this section before proceeding to the protocol. The protocol requires one TruSight Oncology 500 HT kit and at least one IDT® for Illumina® UMI DNA/RNA UD Indexes set (A or B). Combine both sets to index 192 libraries. | Kit | Catalog # | |---|-----------| | TruSight Oncology 500 DNA/RNA High-Throughput Kit (24 Samples) | 20040764 | | TruSight Oncology 500 DNA High-Throughput Kit (48 Samples) | 20040765 | | TruSight Oncology 500 DNA/RNA High-Throughput Kit (72 Samples) | 20040766 | | TruSight Oncology 500 DNA High-Throughput Kit (144 Samples) | 20040767 | | TruSight Oncology 500 DNA/RNA High-Throughput for Automation (32 Samples) | 20049282 | | TruSight Oncology 500 DNA High-Throughput for Automation (64 Samples) | 20049283 | | TruSight Oncology 500 DNA/RNA High-Throughput for Automation (72 Samples) | 20049284 | | TruSight Oncology 500 DNA High-Throughput for Automation (144 Samples) | 20049285 | | Library prep kit plus access to the Pierian Clinical Genomics Workspace | Catalog # | | TruSight Oncology 500 DNA/RNA High-Throughput Kit (24 Samples), plus Pierian | 20040768 | | TruSight Oncology 500 DNA High-Throughput Kit (48 Samples), plus Pierian | 20040769 | | TruSight Oncology 500 DNA/RNA High-Throughput Kit (72 Samples), plus Pierian | 20040770 | | TruSight Oncology 500 DNA High-Throughput Kit (144 Samples), plus Pierian | 20040771 | | TruSight Oncology 500 DNA/RNA High-Throughput for Automation (32 Samples), plus Pierian | 20049276 | | TruSight Oncology 500 DNA High-Throughput for Automation (64 Samples), plus Pierian | 20049277 | | TruSight Oncology 500 DNA/RNA High-Throughput for Automation (72 Samples), plus Pierian | 20049278 | | TruSight Oncology 500 DNA High-Throughput for Automation (144 Samples), plus Pierian | 20049279 | | Index Kit | Catalog # | |--|-----------| | IDT for Illumina - UMI DNA/RNA UD Indexes Set A, Ligation (96 Indexes, 96 Samples) | 20034701 | | IDT for Illumina - UMI DNA/RNA UD Indexes Set B, Ligation (96 Indexes, 96 Samples) | 20034702 | | IDT for Illumina - UMI DNA/RNA UD Indexes Set A for Automation (96 Indexes, 96 Samples) | 20066404 | | IDT for Illumina - UMI DNA/RNA UD Indexes Set B for Automation, (96 Indexes, 96 Samples) | 20063213 | # TruSight Oncology 500 DNA/RNA High-Throughput (24 Samples) RNA Library Prep (Pre-Amp) (REF 20007000), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-------------------------------------| | 1 | EPH3 | Elution, Primer, Fragmentation, Mix | | 1 | FSM | First Strand Synthesis Mix | | 1 | RVT | Reverse Transcriptase | | 1 | SSM | Second Strand Mix | Library Prep without SUA (Pre-Amp) (REF 20039147), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 2 | ALB1 | Adapter Ligation Buffer 1 | | 2 | EPM | Enhanced PCR Mix | | 2 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 2 | ERA1-B | End Repair A-tailing Buffer 1 | | 2 | LIG3 | DNA Ligase 3 | | 2 | STL | Stop Ligation Buffer | ## Library Prep (Pre-Amp) (REF 20007003), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|---------------------------------| | 1 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 2 | SPB | Sample Purification Beads | 2°C to 8°C | | 1 | TEB | TE Buffer | 2°C to 8°C | # Enrichment without TCB (Post-Amp) (REF 20040235), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---|---------------------------------| | 2 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 2 | HP3 | 2 N NaOH | 2°C to 8°C | | 1 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 2 | LNS1 | Library Normalization Storage Buffer
1 | 2°C to 8°C | | 2 | LNW1 | Library Normalization Wash 1 | 2°C to 8°C | | 1 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 2 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 2 | SPB | Sample Purification Beads | 2°C to 8°C | | | | | | ## Enrichment with EHB (Post-Amp) (REF 20040234), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 3 | EE2 | Enrichment Elution 2 | | 1 | EEW | Enhanced Enrichment Wash | | 6 | EHB | Enrichment Hybridization Buffer | | 2 | EPM | Enhanced PCR Mix | | 1 | LNA1 | Library Normalization Additives 1 | | 2 | PPC3 | PCR Primer Cocktail 3 | ## DNA Probes (Post-Amp) (REF 20026138), Store at -25°C to -15°C | Quantity | Reagent | Description | | |----------|---------|----------------------------|--| | 1 | OPD2 | Oncology DNA Probes Pool 2 | | ### RNA Probes (Post-Amp) (REF 20007012), Store at -25°C to -15°C | Quantity | Reagent | Description | | |----------|---------|--------------------------|--| | 1 | OPR1 | Oncology RNA Probes Pool | | # TruSight Oncology 500 DNA High-Throughput (48 Samples) Library Prep without SUA (Pre-Amp) (REF 20039147), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 2 | ALB1 | Adapter Ligation Buffer 1 | | 2 | EPM | Enhanced PCR Mix | | 2 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 2 | ERA1-B | End Repair A-tailing Buffer 1 | | 2 | LIG3 | DNA Ligase 3 | | 2 | STL | Stop Ligation Buffer | ### Library Prep (Pre-Amp) (REF 20007003), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|---------------------| | 1 | RSB | Resuspension Buffer | 2°C to 8°C | | | | | or -25°C to -15°C | | 2 | SPB | Sample Purification Beads | 2°C to 8°C | | 1 | TEB | TE Buffer | 2°C to 8°C | # Enrichment without TCB (Post-Amp) (REF 20040235), See Storage Temperatures in Table | Quantity | Doggont | Description | Storage Temperature | |----------|---------
---|---------------------| | Quantity | Reagent | Description | Storage Temperature | | 2 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 2 | HP3 | 2 N NaOH | 2°C to 8°C | | 1 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 2 | LNS1 | Library Normalization Storage Buffer
1 | 2°C to 8°C | | Quantity | Reagent | Description | Storage Temperature | |----------|---------|------------------------------|---------------------------------| | 2 | LNW1 | Library Normalization Wash 1 | 2°C to 8°C | | 1 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 2 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 2 | SPB | Sample Purification Beads | 2°C to 8°C | ### Enrichment with EHB (Post-Amp) (REF 20040234), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 3 | EE2 | Enrichment Elution 2 | | 1 | EEW | Enhanced Enrichment Wash | | 6 | EHB | Enrichment Hybridization Buffer | | 2 | EPM | Enhanced PCR Mix | | 1 | LNA1 | Library Normalization Additives 1 | | 2 | PPC3 | PCR Primer Cocktail 3 | DNA Probes (Post-Amp) (REF 20026138), Store at -25°C to -15°C Customers will receive two of these boxes. | Quantity | Reagent | Description | |----------|---------|----------------------------| | 2 | OPD2 | Oncology DNA Probes Pool 2 | # TruSight Oncology 500 DNA/RNA High-Throughput (72 Samples) RNA Library Prep (Pre-Amp) (REF 20040222), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|------------------------------------| | 3 | EPH3 | Elution, Primer, Fragmentation Mix | | 3 | FSM | First Strand Synthesis Mix | | 3 | RVT | Reverse Transcriptase | | 3 | SSM | Second Strand Mix | ### Library Prep without SUA (REF 20040223), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 6 | ALB1 | Adapter Ligation Buffer 1 | | 6 | EPM | Enhanced PCR Mix | | 6 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 6 | ERA1-B | End Repair A-tailing Buffer 1 | | 6 | LIG3 | DNA Ligase 3 | | 6 | STL | Stop Ligation Buffer | ### Library Prep (Pre-Amp) (REF 20040224), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|---------------------------------| | 3 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 6 | SPB | Sample Purification Beads | 2°C to 8°C | | 3 | TEB | TE Buffer | 2°C to 8°C | # Enrichment without TCB (Post-Amp) (REF 20040225), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---|---------------------------------| | 6 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 6 | HP3 | 2 N NaOH | 2°C to 8°C | | 3 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 6 | LNS1 | Library Normalization Storage Buffer
1 | 2°C to 8°C | | 6 | LNW1 | Library Normalization Wash 1 | 2°C to 8°C | | 3 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 6 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 6 | SPB | Sample Purification Beads | 2°C to 8°C | | | | | | ### Enrichment with EHB (Post-Amp) (REF 20040226), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 9 | EE2 | Enrichment Elution 2 | | 3 | EEW | Enhanced Enrichment Wash | | 18 | EHB | Enrichment Hybridization Buffer | | 6 | EPM | Enhanced PCR Mix | | 3 | LNA1 | Library Normalization Additives 1 | | 6 | PPC3 | PCR Primer Cocktail 3 | ### DNA/RNA Probes (Post-Amp) (REF 20040227), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|---------------------------| | 3 | OPD2 | Oncology DNA Probe Pool 2 | | 3 | OPR1 | Oncology RNA Probe Pool 1 | # TruSight Oncology 500 DNA High-Throughput (144 Samples) Library Prep without SUA (Pre-Amp) (REF 20040223), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 6 | ALB1 | Adapter Ligation Buffer 1 | | 6 | EPM | Enhanced PCR Mix | | 6 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 6 | ERA1-B | End Repair A-tailing Buffer 1 | | 6 | LIG3 | DNA Ligase 3 | | 6 | STL | Stop Ligation Buffer | ## Library Prep (Pre-Amp) (REF 20040224), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|---------------------------------| | 3 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 6 | SPB | Sample Purification Beads | 2°C to 8°C | | 3 | TEB | TE Buffer | 2°C to 8°C | # Enrichment without TCB (Post-Amp) (REF 20040225), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---|---------------------------------| | 6 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 6 | HP3 | 2 N NaOH | 2°C to 8°C | | 3 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 6 | LNS1 | Library Normalization Storage Buffer
1 | 2°C to 8°C | | 6 | LNW1 | Library Normalization Wash 1 | 2°C to 8°C | | 3 | RSB | Resuspension Buffer | 2°C to 8°C
or -25°C to -15°C | | 6 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 6 | SPB | Sample Purification Beads | 2°C to 8°C | | | | | | ### Enrichment with EHB (Post-Amp) (REF 20040226), Store at -25°C to -15°C | Reagent | Description | |---------|-----------------------------------| | EE2 | Enrichment Elution 2 | | EEW | Enhanced Enrichment Wash | | EHB | Enrichment Hybridization Buffer | | EPM | Enhanced PCR Mix | | LNA1 | Library Normalization Additives 1 | | PPC3 | PCR Primer Cocktail 3 | | | EE2 EEW EHB EPM LNA1 | ## DNA Probes (Post-Amp) (REF 20040755), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|---------------------------| | 6 | OPD2 | Oncology DNA Probe Pool 2 | ## **TruSight Oncology 500 High-Throughput Index Kits** Each IDT for Illumina UMI DNA/RNA UD Indexes set contains two boxes. IDT for Illumina - UMI DNA/RNA UD Indexes Set A, Ligation (96 Indexes, 96 Samples) (REF 20034701), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|-----------|--| | 96 | UDP Set A | IDT for Illumina DNA/RNA UD Indexes Set A (96 Indexes, 96 Samples) (UDP0001-UDP0096) | | 96 | UMI DIA | IDT for Illumina - UMI DNA Index Anchors | IDT for Illumina - UMI DNA/RNA UD Indexes Set B, Ligation (96 Indexes, 96 Samples) (REF 20034702), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|-----------|--| | 96 | UDP Set B | IDT for Illumina DNA/RNA UD Indexes Set B (96 Indexes, 96 Samples) (UDP0097-UDP0192) | | 96 | UMI DIA | IDT for Illumina – UMI DNA Index Anchors | # TruSight Oncology 500 High-Throughput DNA/RNA Automation (32 Samples) TruSight Oncology HT RNA Library Prep Auto (Pre-Amp) (REF 20048965), -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|------------------------------------| | 6 | EPH3 | Elution, Primer, Fragmentation Mix | | 3 | FSM | First Strand Synthesis Mix | | 2 | RVT | Reverse Transcriptase | | 3 | SSM | Second Strand Mix | TruSight Oncology HT Library Prep Auto (Pre-Amp) (REF 20048966), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 4 | ALB1 | Adapter Ligation Buffer 1 | | 6 | EPM | Enhanced PCR Mix | | 7 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 6 | ERA1-B | End Repair A-tailing Buffer 1 | | Quantity | Reagent | Description | |----------|---------|----------------------| | 3 | LIG3 | DNA Ligase 3 | | 5 | STL | Stop Ligation Buffer | # TruSight Oncology HT Library Prep Auto (Pre-Amp) (REF 20048967), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|----------------------------------| | 2 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to -
15°C | | 4 | SPB | Sample Purification Beads | 2°C to 8°C | | 3 | TEB | TE Buffer | 2°C to 8°C | # TruSight Oncology HT Enrichment Auto (Post-Amp) (REF 20048970), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|--|---------------------------------| | 9 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 2 | HP3 | 2 N NaOH | 2°C to 8°C | | 2 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 3 | LNS1 | Library Normalization Storage Buffer 1 | 2°C to 8°C | | 3 | LNW1 | Library Normalization Wash Buffer 1 | 2°C to 8°C | | 3 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to
-15°C | | 5 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 4 | SPB | Sample Purification Beads | 2°C to 8°C | # TruSight Oncology HT Enrichment Auto (Post-Amp) (Ref 20048968), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 7 | EE2 | Enrichment Elution 2 | | 8 | EHB | Enrichment Hybridization Buffer | | 6 | EPM | Enhanced PCR Mix | | 2 | LNA1 | Library Normalization Additives 1 | | 4 | PPC3 | PCR Primer Cocktail 3 | TruSight Oncology HT Enrichment Wash Buffer Auto (Post-Amp) (Ref 20048969), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|--------------------------| | 2 | EEW | Enhanced Enrichment Wash | TruSight Oncology HT 500 DNA/RNA Probes Auto (Post-Amp) (REF 20048971), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|---------------------------| | 2 | OPD2 | Oncology DNA Probe Pool 2 | | 2 | OPR1 | Oncology RNA Probe Pool 1 | # TruSight Oncology 500 High-Throughput DNA Automation (64 Samples) TruSight Oncology HT Library
Prep Auto (Pre-Amp) (REF 20048966), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 4 | ALB1 | Adapter Ligation Buffer 1 | | 6 | EPM | Enhanced PCR Mix | | 7 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 6 | ERA1-B | End Repair A-tailing Buffer 1 | | 3 | LIG3 | DNA Ligase 3 | | 5 | STL | Stop Ligation Buffer | TruSight Oncology HT Library Prep Auto (Pre-Amp) (REF 20048967), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|----------------------------------| | 2 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to -
15°C | | 4 | SPB | Sample Purification Beads | 2°C to 8°C | | 3 | TEB | TE Buffer | 2°C to 8°C | # TruSight Oncology HT Enrichment Auto (Post-Amp) (REF 20048970), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|--|---------------------------------| | 9 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 2 | HP3 | 2 N NaOH | 2°C to 8°C | | 2 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 3 | LNS1 | Library Normalization Storage Buffer 1 | 2°C to 8°C | | 3 | LNW1 | Library Normalization Wash Buffer 1 | 2°C to 8°C | | 3 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to
-15°C | | 5 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 4 | SPB | Sample Purification Beads | 2°C to 8°C | # TruSight Oncology HT Enrichment Auto (Post-Amp) (Ref 20048968), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 7 | EE2 | Enrichment Elution 2 | | 8 | EHB | Enrichment Hybridization Buffer | | 6 | EPM | Enhanced PCR Mix | | 2 | LNA1 | Library Normalization Additives 1 | | 4 | PPC3 | PCR Primer Cocktail 3 | # TruSight Oncology HT Enrichment Wash Buffer Auto (Post-Amp) (Ref 20048969), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|--------------------------| | 2 | EEW | Enhanced Enrichment Wash | # TruSight Oncology HT 500 DNA Probes Auto (Post-Amp) (REF 20048972), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|---------------------------| | 3 | OPD2 | Oncology DNA Probe Pool 2 | # TruSight Oncology 500 High-Throughput DNA/RNA Automation (72 Samples) TruSight Oncology HT XL RNA Library Prep Auto (Pre-Amp) (REF 20048973), -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|------------------------------------| | 13 | EPH3 | Elution, Primer, Fragmentation Mix | | 6 | FSM | First Strand Synthesis Mix | | 4 | RVT | Reverse Transcriptase | | 6 | SSM | Second Strand Mix | TruSight Oncology HT XL Library Prep Auto (Pre-AMP) (REF 20048974), Store at -25°C to -15°C Customers will receive two of these boxes. | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 4 | ALB1 | Adapter Ligation Buffer 1 | | 7 | EPM | Enhanced PCR Mix | | 7 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 6 | ERA1-B | End Repair A-tailing Buffer 1 | | 3 | LIG3 | DNA Ligase 3 | | 5 | STL | Stop Ligation Buffer | | | | | TruSight Oncology HT XL Library Prep Auto (Pre-Amp) (REF 20048975), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|----------------------------------| | 2 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to -
15°C | | 7 | SPB | Sample Purification Beads | 2°C to 8°C | | 3 | TEB | TE Buffer | 2°C to 8°C | # TruSight Oncology HT XL Enrichment Auto (Post-Amp) (REF 20048978), See Storage Temperatures in Table | Reagent | Description | Storage Temperature | |---------|--|--| | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | HP3 | 2 N NaOH | 2°C to 8°C | | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | LNS1 | Library Normalization Storage Buffer 1 | 2°C to 8°C | | LNW1 | Library Normalization Wash Buffer 1 | 2°C to 8°C | | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to
-15°C | | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | SPB | Sample Purification Beads | 2°C to 8°C | | | HP3 LNB1 LNS1 LNW1 RSB | ET2 Elute Target Buffer 2 HP3 2 N NaOH LNB1 Library Normalization Beads 1 LNS1 Library Normalization Storage Buffer 1 LNW1 Library Normalization Wash Buffer 1 RSB Resuspension Buffer SMB Streptavidin Magnetic Beads | # TruSight Oncology HT XL Enrichment Auto (Post-Amp) (Ref 20048976), Store at - 25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 16 | EE2 | Enrichment Elution 2 | | 18 | EHB | Enrichment Hybridization Buffer | | 14 | EPM | Enhanced PCR Mix | | 4 | LNA1 | Library Normalization Additives 1 | | 8 | PPC3 | PCR Primer Cocktail 3 | # TruSight Oncology HT XL Enrichment Wash Buffer Auto (Post-Amp) (Ref 20048977), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|--------------------------| | 3 | EEW | Enhanced Enrichment Wash | # TruSight Oncology HT XL 500 DNA/RNA Probes Auto (Post-Amp) (REF 20048979), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|---------------------------| | 5 | OPD2 | Oncology DNA Probe Pool 2 | | 5 | OPR1 | Oncology RNA Probe Pool 1 | # **TruSight Oncology 500 High-Throughput DNA Automation (144 Samples)** TruSight Oncology HT XL Library Prep Auto (Pre-AMP) (REF 20048974), Store at -25°C to -15°C Customers will receive two of these boxes. | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 4 | ALB1 | Adapter Ligation Buffer 1 | | 7 | EPM | Enhanced PCR Mix | | 7 | ERA1-A | End Repair A-tailing Enzyme Mix 1 | | 6 | ERA1-B | End Repair A-tailing Buffer 1 | | 3 | LIG3 | DNA Ligase 3 | | 5 | STL | Stop Ligation Buffer | TruSight Oncology HT XL Library Prep Auto (Pre-Amp) (REF 20048975), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|---------------------------|----------------------------------| | 2 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to -
15°C | | 7 | SPB | Sample Purification Beads | 2°C to 8°C | | 3 | TEB | TE Buffer | 2°C to 8°C | TruSight Oncology HT XL Enrichment Auto (Post-Amp) (REF 20048978), See Storage Temperatures in Table | Quantity | Reagent | Description | Storage Temperature | |----------|---------|--|---------------------| | 20 | ET2 | Elute Target Buffer 2 | 2°C to 8°C | | 5 | HP3 | 2 N NaOH | 2°C to 8°C | | 4 | LNB1 | Library Normalization Beads 1 | 2°C to 8°C | | 4 | LNS1 | Library Normalization Storage Buffer 1 | 2°C to 8°C | | 5 | LNW1 | Library Normalization Wash Buffer 1 | 2°C to 8°C | | Quantity | Reagent | Description | Storage Temperature | |----------|---------|-----------------------------|---------------------------------| | 4 | RSB | Resuspension Buffer | 2°C to 8°C or -25°C to
-15°C | | 8 | SMB | Streptavidin Magnetic Beads | 2°C to 8°C | | 5 | SPB | Sample Purification Beads | 2°C to 8°C | TruSight Oncology HT XL Enrichment Auto (Post-Amp) (Ref 20048976), Store at - 25°C to -15°C | Quantity | Reagent | Description | |----------|---------|-----------------------------------| | 16 | EE2 | Enrichment Elution 2 | | 18 | EHB | Enrichment Hybridization Buffer | | 14 | EPM | Enhanced PCR Mix | | 4 | LNA1 | Library Normalization Additives 1 | | 8 | PPC3 | PCR Primer Cocktail 3 | TruSight Oncology HT XL Enrichment Wash Buffer Auto (Post-Amp) (Ref 20048977), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|--------------------------| | 3 | EEW | Enhanced Enrichment Wash | TruSight Oncology HT XL 500 DNA Probes Auto (Post-Amp) (REF 20048980), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|---------|---------------------------| | 7 | OPD2 | Oncology DNA Probe Pool 2 | # **TruSight Oncology 500 High-Throughput Index Kits for Automation** Each IDT for Illumina UMI DNA/RNA UD Indexes Set for Automation contains two boxes. IDT for Illumina - UMI DNA/RNA UD Indexes Set A for Automation, (96 Indexes, 96 Samples) (REF 20066404), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|-----------------------------|--| | 96 | UDP Set A for
Automation | IDT for Illumina - DNA/RNA UD Indexes Set A for Automation (96 indexes, 96 samples), (UDP0001-UDP0096) | | 96 | UMIs for
Automation | IDT for Illumina - UMI DNA Index Anchors for Automation | IDT for Illumina - UMI DNA/RNA UD Indexes Set B for Automation, (96 Indexes, 96 Samples) (REF 20063213), Store at -25°C to -15°C | Quantity | Reagent | Description | |----------|-----------------------------|--| | 96 | UDP Set B for
Automation | IDT for Illumina - DNA/RNA UD Indexes Set B for Automation (96 indexes, 96 samples), (UDP0097-UDP0192) | | 96 | UMIs for
Automation | IDT for Illumina - UMI DNA Index Anchors for Automation | # Consumables and Equipment Make sure that you have the required consumables and equipment before starting the protocol. The protocol has been optimized and validated using the items listed. Comparable performance is not guaranteed when using alternate consumables and equipment. ## **Consumables** | Consumable | Supplier | |--|-----------------------------------| | 1.7 ml microcentrifuge tubes, nuclease-free | General lab supplier | | 15 ml conical tubes | General
lab supplier | | 50 ml conical tubes | General lab supplier | | 20 µl aerosol resistant pipette tips | General lab supplier | | 200 µl aerosol resistant pipette tips | General lab supplier | | 1 ml aerosol resistant pipette tips | General lab supplier | | 96-well storage plates, 0.8 ml (MIDI plates) | Fisher Scientific, part # AB-0859 | | 96-well PCR plates, 0.2 ml (polypropylene) | General lab supplier | | Consumable | Supplier | |---|---| | Nuclease-free reagent reservoirs (PVC, disposable trough) | VWR, part # 89094-658 | | Microseal 'B' adhesive seal (adhesive plate seal) | Bio-Rad, part # MSB-1001 | | RNase/DNase-free water | General lab supplier | | Nuclease-free water | General lab supplier | | Ethanol (200 proof for molecular biology) | Sigma-Aldrich, part # E7023 | | [LE220-plus, R230] One of the following consumables: • 8 microTUBE Strip (12 or 120) • 96 microTUBE Plate (1 or 10) | One of the following suppliers: Covaris, part # 520053 (12) or part # 520109 (120) Covaris, part # 520078 (1) or part # 520069 (10) | | [E220evo] 8 microTUBE Strip (12 or 120) | Covaris, part # 520053 (12) or part # 520109 (120) | | [LE220-plus, E220evo, R230] 8 microTUBE
Strip Foil Seal (12) (for use with 8 microTUBE
Strip) | Covaris, catalog # 520108 | | [ML230, ME220] microTUBE-50 AFA Fiber H
Strip V2 | Covaris, part # 520240 | | [M220] microTUBE-50 AFA Fiber Screw-Cap (25 or 250) | Covaris, part # 520166 (25) or part # 520167 (250) | | [Optional] 96-well microplate, black, flat, clear bottom | Corning, part # 3904 | | [Optional] AccuClear Ultra High Sensitivity dsDNA Quantitation Kit with 1 DNA Standard | Biotium, catalog # 31029 | | [Optional] Agilent DNA 1000 Kit | Agilent, catalog # 5067–1504 | | [Optional] Agilent RNA 6000 Nano Kit | Agilent, catalog # 5067–1511 | | [Optional] AllPrep DNA/RNA FFPE Kit | QIAGEN, catalog # 80234 | | [Optional] DNA Reference Standard | Horizon Diagnostics, catalog # HD753 | | [Optional] QuantiFluor RNA System | Promega, catalog # E3310 | | [Optional] Standard Sensitivity RNA Analysis
Kit | Agilent, catalog # DNF-471-0500 | | [Optional] TruSight FFPE QC Kit | Illumina, catalog # 20139070 | | [Optional] Universal Human Reference RNA | Agilent, catalog # 740000 | | | | # **Equipment (Pre-Amp)** | Equipment | Supplier | |--|---| | Thermal Cycler | General lab supplier | | Heat block (1.5 ml microcentrifuge tube) | General lab supplier | | (2) Heat blocks (Hybex incubator, heating base) | SciGene, catalog # • 1057-30-0 (115 V) or • 1057-30-2 (230 V) | | (2) MIDI heat block inserts (for use with Hybex) | Illumina, catalog # BD-60-601 | | Tabletop centrifuge (plate centrifuge) | General lab supplier | | Microcentrifuge (1.5 ml tubes) | General lab supplier | | Magnetic stand-96 | Thermo Fisher, catalog # AM10027 | | Vortexer | General lab supplier | | Plate shaker (BioShake XP) | Q Instruments, part # 1808-0505 | | One of the following ultrasonicators: Covaris E220evolution Focused- ultrasonicator Covaris LE220-plus Focused-ultrasonicator Covaris R230 Focused-ultrasonicator Covaris ML230 Focused-ultrasonicator Covaris ME220 Focused-ultrasonicator Covaris M220 Focused-ultrasonicator | One of the following suppliers: Covaris, part # 500429 Covaris, part # 500569 Covaris, part # 500620 Covaris, part # 500656 Covaris, part # 500506 Covaris, part # 500295 | | Required hardware for ultrasonicators: [E220evo] Rack E220e 8 microTUBE Strip [LE220-plus] Rack 12 place 8 microTUBE Strip [R230] PSU Rack R230 TPX Plate & 130 Plate [ML230] Rack 8 microTUBE Strip V2 [ME220] Rack 8 microTUBE Strip V2 [ME220] Waveguide 8 Place [M220] Holder XTU [M220] Holder XTU Insert microTUBE 50 μl | One of the following suppliers: Covaris, part # 500430 Covaris, part # 500191 Covaris, part # 500750 Covaris, part # 500661 Covaris, part # 500518 Covaris, part # 500526 Covaris, part # 500414 Covaris, part # 500488 | | [Optional] 8 microTUBE Strip Prep Station | Covaris, part # 500327 | | Equipment | Supplier | |---|------------------------------------| | [Optional] microTUBE Prep Station Snap & Screw Cap | Covaris, part # 500330 | | [Optional] Rack Loading Station | Covaris, part # 500523 | | [Optional] 2100 Bioanalyzer Desktop System | Agilent, part # G2940CA | | [Optional] Fragment Analyzer Automated CE
System | Agilent, part # M5310AA or M5311AA | | [Optional] Spectrophotometer | General lab supplier | # **Equipment (Post-Amp)** | Equipment | Supplier | |---|---| | Heat block (1.5 ml microcentrifuge tube) | General lab supplier | | Heat block (Hybex incubator, 96-well plate) | SciGene, catalog # • 1057-30-0 (115 V) or • 1057-30-2 (230 V) | | MIDI heat block insert (for use with Hybex) | Illumina, catalog # BD-60-601 | | Tabletop centrifuge (plate centrifuge) | General lab supplier | | Microcentrifuge (1.5 ml tubes) | General lab supplier | | Magnetic stand-96 | Thermo Fisher, catalog # AM10027 | | Vortexer | General lab supplier | | Plate shaker (BioShake XP) | Q Instruments, part # 1808-0505 | | Thermal cycler | General lab supplier | | [Optional] 2100 Bioanalyzer Desktop System | Agilent, part # G2940CA | | [Optional] Fragment Analyzer Automated CE
System | Agilent, part # M5310AA or M5311AA | | [Optional] Spectrophotometer | General lab supplier | ## Resources and References The TruSight Oncology 500 High Throughput support pages on the Illumina support site provide additional resources. These resources include training, compatible products, and other considerations. Always check support pages for the latest versions. # **Revision History** | Document | Date | Description of Change | |------------------------------------|-------------------|---| | Document #
1000000094853
v04 | May 2025 | Added information for the TruSight FFPE QC Kit. Added Covaris ML230, M220, and R230 instrument information. Updated the note for the potentially hazardous chemicals in the reagents. Updated volume recommendations in the elute portion of the Capture Targets One section. | | Document #
1000000094853
v03 | April 2022 | Added automation kit information for 72 and 144 sample kits. | | Document #
1000000094853
v02 | September
2021 | Added automation kit information. | | Document #
1000000094853
v01 | July 2021 | Updated IDT for Illumina index kit names. | | Document #
1000000094853
v00 | April 2020 | Initial release. | Illumina, Inc. 5200 Illumina Way San Diego, California 92122 U.S.A. +1.800.809.ILMN (4566) +1.858.202.4566 (outside North America) techsupport@illumina.com www.illumina.com For Research Use Only. Not for use in diagnostic procedures. © 2025 Illumina, Inc. All rights reserved.