VeriSeq NIPT Solution v2 Sample Prep Checklist

Process Samples

- □ 1 Complete the following steps for each aliquot: □ a Centrifuge at $1600 \times g$ for 10 minutes at $4^{\circ}C$.
 - □ b Begin plasma isolation within 15 minutes.
- □ 2 Inspect to confirm that each tube contains at least 1.5 ml plasma above the buffy coat.
- □ 3 Uncap the tubes and load them into the tube carriers.

Isolate Plasma

- 1 Enter the Batch ID and username.
- 2 Load a sample sheet or click No Sample Sheet.
- \Box 3 Select the batch size.
- 4 Select the number of no template controls (NTCs).
- 5 Load the samples, tips, and plates (barcode facing right) onto the carrier.
- \Box 6 Observe the automated steps.
- □ 7 When finished, click **Unload** to unload the deck.
- 8 Remove the Intermediate Plasma deep-well plate.
 - \Box a Inspect the plate for consistent volumes.
 - b Note any inconsistencies.
 - \Box c Seal the plate, load with balance, and centrifuge at 5600 × g for 10 minutes.
- 9 Click Yes.
- 10 Remove the plate seal and reload the plate onto the carrier.
- \Box 11 Observe the automated steps.
- 12 When finished, click **Unload** to unload the deck.
- □ 13 When prompted by the Workflow Manager, empty the carriers and deck.
- □ 14 Remove the Final Plasma deep-well plate.
- □ 15 Inspect the plate for consistent volumes, visible cell pellets, and excessive hemolysis.
- 16 Invalidate samples with a visible cell pellet or excessive hemolysis.
- \Box 17 Enter comments about affected wells.

SAFE STOPPING POINT

If you are stopping, seal the Final Plasma plate and store at $2^\circ\text{C}\,\text{to}\,8^\circ\text{C}$ for up to 7 days.

Extract cfDNA

- □ 1 Load tips.
- 2 Enter the location of the first and last tips for each tip rack.
- □ 3 Scan the Extraction Box barcodes.
- 4 Enter the user name or reagent preparer initials.
- \Box 5 Scan the Accessory Box barcodes.
- 6 Enter the user name or reagent preparer initials.
- □ 7 Unseal the Final Plasma deep-well plate, and load plates (barcode facing right) onto carrier.
- □ 8 For partial plate batches, apply a trimmed plate seal over the unused wells (columns 4–12 for 24 sample batches and columns 7–12 for 48 sample batches).
- 9 Load the DNA Binding plate onto the vacuum manifold.
- 10 Select the Are DNA Binding Plate Columns Sealed? checkbox, and then click OK.
- \Box 11 Pour the reagents into tubs and load.
- □ 12 Transfer reagents to deep-well reservoirs and load.
- 13 Wait for the reagent volume check to complete.
- □ 14 Confirm that the vacuum waste is not more than half full (empty recommended).
- \Box 15 Observe the automated steps.
- ☐ 16 Centrifuge the DNA Binding plate at 5600 × g for 10 minutes.
- □ 17 During centrifugation, clean the vacuum with 70% EtOH.
- □ 18 After centrifugation, unseal the wells containing samples on the DNA Binding plate and place it on top of the cfDNA Elution plate.
- \Box 19 Observe the automated steps.

illumina

VeriSeq NIPT Solution v2 Sample Prep Checklist

- 20 After incubation, select the **Plates are assembled as indicated** checkbox.
- 21 Centrifuge the DNA Binding plate at 5600 x g for 2 minutes.
- 22 Inspect the cfDNA Elution plate for consistent volumes
- 23 Seal and retain the cfDNA Elution plate for library preparation.
- 24 When finished, click **Unload** to unload the deck.
- 25 Unload all carriers and clean the ML STAR deck.
- \Box 26 Enter comments about affected wells.
- \square 27 Perform one of the following steps:
 - To continue to Prepare Libraries, click **Yes**.
 - To stop, click **Exit**.

SAFE STOPPING POINT

If you are stopping, seal the cfDNA Elution plate and store at -25°C to -15°C for up to 7 days.

- **Prepare Libraries**
- □ 1 Scan the Library Prep Box barcodes.
- 2 Enter the user name or reagent preparer initials.
- □ 3 Scan the Accessory Box barcodes.
- 4 Enter the user name or reagent preparer initials.
- 5 Load tips.
- 6 Enter the location of the first tip for each tip rack.
- 7 Load plates.
- 8 Pour reagents into the deep well reservoirs and load.
- \Box 9 Pour reagents into tubs and load.
- 10 Wait for the reagent volume check to complete.
- \Box 11 Observe the automated steps.
- 12 When finished, click **Unload** to unload the deck.
- 13 Inspect the Libraries plate for consistent volumes.
- \Box 14 If storing, seal and retain the Libraries plate.
- \Box 15 Unload the carriers and clean the deck.
- □ 16 Enter comments about affected wells.
- \square 17 Perform one of the following steps:
 - ► To continue to Quantify Libraries, click **Yes**.
 - ► To stop, click Exit.
- 18 Unless you are stopping, proceed immediately with quantification.

SAFE STOPPING POINT

If you are stopping, seal the Libraries plate prior to storage. The Libraries plate is stable for up to 7 days from date of preparation at -25°C to -15°C.

Quantify Libraries

- \Box 1 Scan the Accessory Box barcodes.
- 2 Enter the user name or reagent preparer initials.
- \Box 3 Load tips onto the tip carrier.
- 4 Unseal the Libraries plate, and then load plates.
- \Box 5 Load reagent tubes without caps.
- \Box 6 Pour the reagents into reagent tubs and load.
- □ 7 Wait for the reagent volume check to complete.
- 8 Observe the automated steps.
- 9 When finished, click **Unload** to unload the deck.
- 10 Unload the Libraries plate, check for consistent volumes, seal, and store at room temperature.
- 11 Unload 96-well plates and check for consistent volumes
- □ 12 Unload the 384-well plate and check for liquid in the appropriate wells.
- \Box 13 Seal the plate with a foil seal.
- \Box 14 Centrifuge at 1000 \times g for 20 seconds.
- □ 15 Incubate at room temperature for 10 minutes, protected from light.
- □ 16 Unload all carriers and clean the ML STAR deck.
- □ 17 After incubation, remove the foil seal and load the 384-well plate onto the microplate reader.
- 18 Double click the VeriSeq NIPT template to open it in SoftMax Pro.
- 19 Select New Experiment in the Home tab.
- 20 Select Read.
- \Box 21_Export the data as XML as follows.
 - a Right click **Plate**, and then select **Rename**.

illumina

- □ b Scan the barcode of the Quantification plate, and then click **OK**.
- In the upper-left corner of the screen, click the plate icon, and then select
 Export from the menu.
- d Select the Expt name checkbox, set the plate date option to raw, set the output format to XML, and then click OK.
- e Set the output file path and name, and then click **Save**.
- 22 On the ML STAR, enter the fluorometer ID, enter comments for the run, and upload the XML file.
- \square 23 Review the analysis results.
- \Box 24 Enter comments about affected wells.
- \Box 25 Assess the results.
 - If the results pass specification, proceed to Pool Libraries. For specifications, see the quantitation QC metrics and boundaries table in the VeriSeq NIPT Solution v2 Software Guide (document # 100000067940).
 - If the results fail specification, the system aborts the method. Repeat the quantification procedures beginning with *Preparation* on page 1.

 \square 26 Perform one of the following steps:

- To continue to Pool Libraries, click **Yes**.
- To stop, click Exit.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C for up to 7 days.

Pool Libraries

- □ 1 Place the Libraries plate on the thermal cycler and run the denature program.
- $\label{eq:centrifuge the Libraries plate at 1000 <math display="inline">\times$ g for 20 seconds.
- \Box 3 Select the pool concentration.
- \Box 4 Load a sample sheet or use the default.
- 5 Select Start.
- 6 Load tips.
- □ 7 Load the Denatured Library plate.
- \square 8 Load pooling tubes.
- \Box 9 Pour the reagents into reagent tubs and load.
- □10 Load tips.
- □ 11 Enter the location of the first and last tips for each tip rack.
- \Box 12 Observe the automated steps.
- □ 13 Enter comments about affected wells.
- 14 When finished, select **Unload** to unload the deck.
- \Box 15 Unload the tube carrier.
- ☐ 16 Cap each pooling tube, vortex, and then centrifuge briefly.
- 17 Click **OK**.
- ☐ 18 Sequence libraries as soon as possible after pooling. If necessary, seal the Libraries plate and store at -25°C to -15°C for up to 7 days cumulative storage to allow repooling.

SAFE STOPPING POINT

If you are stopping, cap the pooling tubes and store at -25°C to -15°C for up to 7 days.

Prepare Pooled Libraries for Sequencing

- □ 1 Add the following consumables to the reagent cartridge, and then pipette to mix.
 - 900 µl Hybridization Buffer
 - 450 µl Pool A
- 2 Proceed with sequencing on a nextgeneration sequencing system.
- □ 3 If necessary, repeat this procedure for Pool B.
 - To achieve target cluster density range, the library plate can be repooled using a different pooling concentration on the Hamilton. Repooling invalidates the original pool.
 - Alternatively, the ratio of pool to HT1 (450+900ul) can be modified to achieve target cluster density range.