illumina

HiSeq 4000

Guía del sistema

N.º de documento 15066496 v05 ESP N.º de material 20015630 Marzo de 2018 Para uso exclusivo en investigación. Prohibido su uso en procedimientos de diagnóstico. PROPIEDAD DE ILLUMINA

Este documento y su contenido son propiedad de Illumina, Inc. y sus afiliados ("Illumina") y están previstos solamente para el uso contractual de sus clientes en conexión con el uso de los productos descritos en él y no para ningún otro fin. Este documento y su contenido no se utilizarán ni distribuirán con ningún otro fin ni tampoco se comunicarán, divulgarán ni reproducirán en ninguna otra forma sin el consentimiento previo por escrito de Illumina. Illumina no transfiere mediante este documento ninguna licencia bajo sus derechos de patente, marca comercial, copyright ni derechos de autor o similares derechos de terceros.

Para asegurar el uso correcto y seguro de los productos descritos en este documento, el personal cualificado y adecuadamente capacitado debe seguir las instrucciones incluidas en este de manera rigurosa y expresa. Se debe leer y entender completamente todo el contenido de este documento antes de usar estos productos.

SI NO SE LEE COMPLETAMENTE EL DOCUMENTO Y NO SE SIGUEN EXPRESAMENTE TODAS LAS INSTRUCCIONES DESCRITAS EN ESTE, PODRÍAN PRODUCIRSE DAÑOS EN EL PRODUCTO, LESIONES PERSONALES, INCLUIDOS LOS USUARIOS U OTRAS PERSONAS, Y DAÑOS EN OTROS BIENES, Y QUEDARÁ ANULADA TODA GARANTÍA APLICABLE AL PRODUCTO.

ILLUMINA NO ASUME RESPONSABILIDAD ALGUNA DERIVADA DEL USO INCORRECTO DE LOS PRODUCTOS AQUÍ DESCRITOS (INCLUIDAS LAS PIEZAS O EL SOFTWARE).

© 2018 Illumina, Inc. Todos los derechos reservados.

Todas las marcas comerciales pertenecen a Illumina, Inc. o a sus respectivos propietarios. Para obtener información específica sobre las marcas comerciales, consulte www.illumina.com/company/legal.html.

Historial de revisiones

Documento	Fecha	Descripción del cambio
N.º de material 20015630 N.º de documento 15066496 v05	Marzo de 2018	Incorporación de información sobre el servicio de supervisión proactiva de Illumina en la sección Visualización y envío de datos del instrumento. Modificación de la información sobre reactivos para sustituir HP12 por HP14.
N.º de material 20015630 N.º de documento 15066496 v04	Enero de 2017	Actualización del procedimiento de lavado de mantenimiento. Eliminación de Sigma-Aldrich, n.º de catálogo SRE0076, para la solución de lavado SeqClin. Actualización del nombre del software a HiSeq Control Software versión 3.4.
N.º de material 20013047 N.º de documento 15066496 v03	Septiembre de 2016	 Adición de la herramienta de selección de protocolos personalizados a Recursos adicionales. Adición de Sigma-Aldrich, n.º de catálogo SRE0076, para la solución de lavado SeqClin. Indicación de la frecuencia aproximada para renovar los tubos y las botellas de lavado. Actualización de las instrucciones para iniciar el instrumento: Espere a que el sistema se cargue antes de iniciar sesión en el sistema operativo, no después. Aumento de 1 a 3 minutos el tiempo para que los dispositivos del instrumento se configuren y se inicialice DoNotEject. Indicación de las instrucciones de formateo rápido para incluir la unidad (S:\) de almacenamiento temporal. Corrección de las instrucciones para acceder al archivo de registro. Corrección de las descripciones de las opciones de servidor de BaseSpace.

Documento	Fecha	Descripción del cambio
N.º de material 20007157 N.º de documento 15066496 v02	Mayo de 2016	 Descripciones actualizadas de software correspondientes al software de control de HiSeq v3.3.76: Adición de instrucciones sobre la configuración de un dominio destinadas a los suscriptores de BaseSpace Enterprise. Actualización de las instrucciones para que en los experimentos de escalonamiento se incluya el uso del botón Pause (Pausar). Cambio de la denominación de BaseSpace a BaseSpace Sequence Hub. Adición de la siguiente información: Los números de catálogo de los kits de generación de grupos. La <i>Guía del sistema cBot 2 (n.º de documento 15065681)</i> como referencia para la generación de grupos. La estructura de carpetas de las carpetas de resultados de secuenciación y el nombre y la ruta de la carpeta del experimento. Solución del problema de pérdida de registro en la lectura 1. Recomendación para el servicio de mantenimiento preventivo anual. Eliminación de los elementos siguientes: Los tubos cónicos autónomos y las puntas de pipeta de los consumibles proporcionados por el usuario. El nómbre de usuario y la contraseña predeterminados necesarios para iniciar sesión en el sistema operativo. Illumina recomienda utilizar credenciales específicas del centro. El número del catálogo de esta guía. Corrección de los elementos siguientes: Instrucciones para la preparación y la carga de reactivos "paired-end" y de indexado para un experimento de lectura individual. No se requiere HRM para un experimento de lectura individual de un solo índice. El nombre del software de análisis en tiempo real empleado en el instrumento pasa de RTA v2 a RTA2.

Documento	Fecha	Descripción del cambio
N.º de material 20000063 N.º de documento 15066496 v01	Agosto de 2015	 Actualización de las descripciones de software al software de control de HiSeq v3.3.52, que añade las características siguientes: La opción de secuenciación de una celda de flujo de lectura individual. La opción de conectarse a BaseSpace Onsite. Indicadores de sensores que muestran el estado de la transferencia de datos del servicio de copia del experimento y BaseSpace. Cambio de nombre del campo de identificación del kit de reactivos de PE de la pantalla Reagents (Reactivos) como campo de ID del kit de generación de grupos. Actualización de las instrucciones para la realización de los experimentos de escalonamiento en las celdas de flujo A y B. Adición de la opción para especificar un número personalizado de ciclos SBS en la pantalla Reagents (Reactivos), así como actualización de los valores predeterminados de ciclos restantes. Adición de la siguiente información: Instrucciones para la preparación de reactivos SBS, "paired-end" y de indexado. Instrucciones para limpiar el soporte de la celda de flujo con agua antes de utilizar alcohol. Nota para eliminar la solución de lavado de mantenimiento según la normativa local. Corrección de la duración y los volúmenes esperados del lavado de mantenimiento.
N.º de referencia 15066496 Rev. A	Febrero de 2015	Publicación inicial.

Contenido

Historial de revisiones	iii
Capítulo 1 Descripción general Introducción Recursos adicionales Componentes del instrumento Descripción general de los consumibles de secuenciación	1 1 1
Capítulo 2 Primeros pasos Inicio de HiSeq 4000 Personalización de los ajustes del sistema Visualización y envío de datos del instrumento Consumibles proporcionados por el usuario	
Capítulo 3 Preparación de reactivos	12
Introducción Preparación de los reactivos SBS Preparación de los reactivos "paired-end" y de indexado	
Capítulo 4 Secuenciación	14
Introduccion	14
Flujo de trabajo de secuenciacion	
Carra y cabada da regativas	10
Carga de la celda de fluie de secuenciación	
Supervisión del experimento	
Descarga de reactivos	26
Bealización de un lavado con agua	
Formateo rápido de las unidades de salida y de almacenamiento temporal	
Capítulo 5 Mantenimiento	
Introducción	
Realización de un lavado de mantenimiento	
Inactividad del instrumento	
Apagado del instrumento	
Apéndice A Solución de problemas	35
Archivo de registro	
Posibles problemas de configuración de experimentos	
Realización de una comprobación de fluidica	
Pausa o Tinalizacion de un experimento en HiSeq 4000	
Escaionamiento de experimentos en la ceida de flujo A y la ceida de flujo B	

Posible rehibridación del cebador de lectura 1	
Apéndice B Análisis en tiempo real Descripción general del análisis en tiempo real Flujo de trabajo de análisis en tiempo real	
Apéndice C Archivos de resultados Archivos de resultados de secuenciación Estructura de las carpetas de resultados Numeración de placas	
Índice alfabético	
Asistencia técnica	

Capítulo 1 Descripción general

Introducción	1
Recursos adicionales	. 1
Componentes del instrumento	. 2
Descripción general de los consumibles de secuenciación	. 7

Introducción

El sistema HiSeq[®] 4000 combina un diseño técnico innovador y un rendimiento demostrado para ofrecer unos resultados óptimos y reducir costes para la genómica a escala de producción.

Funciones

- Adquisición de imágenes de las dos superficies: El sistema HiSeq 4000 utiliza un sistema de epifluorescencia de dos cámaras y cuatro sensores con una tecnología de adquisición de imágenes de vanguardia que permite la adquisición de imágenes de las dos superficies.
- Celda de flujo estampada: Una celda de flujo estampada permite generar grupos de secuenciación en la disposición solicitada, lo que incrementa las lecturas de resultados y los datos.
- Dobles celdas de flujo: El sistema HiSeq 4000 es un sistema de doble celda de flujo, que permite la secuenciación simultánea de una celda de flujo o de dos celdas de flujo con diferentes longitudes de lectura.
- ▶ Refrigerador de reactivos de alta capacidad: El compartimento de reactivos es un refrigerador de alta capacidad que almacena la cantidad de reactivos suficiente para todo el experimento de secuenciación.
- Fluídica integrada para experimentos "paired-end": La fluídica "paired-end" integrada suministra reactivos del compartimento de reactivos a la celda de flujo para la resíntesis de la lectura 2 y para la secuenciación indexada.
- Opciones de control de la interfaz: La interfaz del software del instrumento proporciona opciones para la configuración de un experimento y el funcionamiento del instrumento. Utilice el monitor de pantalla táctil o el teclado integrado para introducir los datos.
- Llamada de bases en tiempo real: El software del instrumento extrae las intensidades a partir de las imágenes y realiza una llamada de bases clasificada por calidad al ordenador del instrumento, lo que permite supervisar los datos de calidad durante el experimento y ahorra tiempo en el análisis de los datos posterior. Este método permite la supervisión de las métricas de calidad durante el experimento y ahorra tiempo durante el experimento y ahorra.

Los análisis sucesivos de datos de secuenciación se pueden realizar con software de análisis de Illumina[®] u otros proveedores en una infraestructura personalizada.

Integración de BaseSpace® Sequence Hub: El flujo de trabajo de secuenciación está integrado en BaseSpace Sequence Hub, el entorno informático de genómica de Illumina para la colaboración y el almacenamiento y análisis de datos. En el transcurso del experimento, los archivos de resultados se envían en tiempo real a BaseSpace Sequence Hub o a BaseSpace Onsite Sequence Hub.

Recursos adicionales

La documentación siguiente está disponible para su descarga en el sitio web de Illumina. Revise siempre las páginas de asistencia para obtener las versiones más recientes.

Recurso	Descripción
Herramienta de selección de protocolos personalizados	Un asistente de generación de documentación de extremo a extremo personalizada que está adaptada al método de preparación de bibliotecas, a los parámetros del experimento y al método de análisis utilizado para el experimento de secuenciación.
Guía de preparación del centro para sistemas HiSeq 4000 y HiSeq 3000 (n.º de documento 15066492)	Proporciona especificaciones para el espacio del laboratorio, los requisitos eléctricos y las consideraciones medioambientales.
Guía de cumplimiento y seguridad de los sistemas HiSeq 4000 y HiSeq 3000 (n.º de documento 15066491)	Proporciona información sobre el etiquetado del instrumento, las certificaciones de cumplimiento y las consideraciones de seguridad.

Visite la página de asistencia del sistema HiSeq 4000 en el sitio web de Illumina para acceder a la documentación, las descargas de software, la formación en línea y las preguntas frecuentes.

Componentes del instrumento

El sistema HiSeq 4000 se compone del instrumento, el monitor, el ordenador de control del instrumento y los accesorios, tales como el teclado, el ratón y el lector de códigos de barras. El instrumento incluye cuatro compartimentos principales: el módulo óptico, el compartimento de la celda de flujo, el compartimento de fluídica y el compartimento de reactivos. Si la barra de estado está iluminada, el equipo está en funcionamiento.

- A Módulo óptico: Contiene componentes ópticos que permiten la adquisición de imágenes de las dos superficies de la celda de flujo, digitalizando A, C, G y T al mismo tiempo mediante epifluorescencia. El haz láser de excitación pasa a través del objetivo y la fluorescencia se almacena simultáneamente por medio del mismo objetivo.
- B **Compartimento de la celda de flujo**: Contiene la platina de la celda de flujo controlada por vacío, que mantiene las celdas de flujo en su sitio durante experimentos de secuenciación.
- C Compartimento de fluídica: Contiene bombas de fluídica que suministran reactivos a la celda de flujo y, a continuación, al contenedor de residuos.
- D Barra de estado: Utiliza tres colores para indicar el estado del instrumento. El azul indica que el instrumento está en funcionamiento, el naranja indica que el instrumento necesita atención y el verde indica que el instrumento está listo para empezar el siguiente experimento.

E **Compartimento de reactivos**: Contiene gradillas de reactivos que a su vez contienen los reactivos necesarios para los experimentos de secuenciación y la solución de lavado para el lavado del instrumento.

Compartimento de la celda de flujo

El compartimento de la celda de flujo contiene la platina de la celda de flujo, las estaciones térmicas, el sistema de vacío y las conexiones de fluídica para cada celda de flujo.

Figura 2 Platina de la celda de flujo con dos celdas de flujo

- A Celda de flujo A
- B Celda de flujo B
- C Palanca de la celda de flujo A
- D Palanca de la celda de flujo B

La celda de flujo A está situada a la izquierda, y la celda de flujo B, a la derecha. Las celdas de flujo se colocan en la platina, que entra y sale del módulo óptico según se lo indique el software de control. La platina debe situarse en la posición más avanzada para abrir la puerta del compartimento de la celda de flujo y para cargar o retirar una celda de flujo.

La celda de flujo está colocada en el soporte de la celda de flujo con los orificios de entrada y salida mirando hacia abajo, y fijada en su sitio mediante vacío bajo cada soporte de celda de flujo. La palanca de la celda de flujo iluminada delante de cada soporte de la celda de flujo controla el vacío. La palanca de la celda de flujo se vuelve verde cuando la junta de vacío es segura.

Compartimento de reactivos

El compartimento de reactivos es un refrigerador de reactivos de alta capacidad que alberga tres gradillas de reactivos: dos para reactivos SBS y una para los reactivos "paired-end" y de indexación. Los mangos de los dispensadores sirven para bajar los dispensadores e introducirlos en las botellas de reactivo.

- Gradillas de reactivos SBS: Albergan botellas cónicas de 250 ml. La gradilla de reactivos de la celda de flujo A está en la posición central y la de la celda de flujo B, en el extremo derecho. Cada gradilla de reactivos tiene posiciones numeradas que se corresponden con las conexiones de una válvula selectora de reactivos interna.
- ▶ Gradilla de reactivos de indexado y "paired-end": Se encuentra en la posición izquierda. Tiene dos filas de posiciones numeradas que albergan tubos cónicos de 15 ml que contienen reactivos "paired-end" y de indexado. La fila izquierda es para la celda de flujo A y la fila derecha, para la celda de flujo B.

▶ Refrigerador de reactivos: El refrigerador de reactivos contiene gradillas de reactivos y mantiene una temperatura interna de entre 2 °C y 8 °C.

Figura 3 Compartimento de reactivos

- A Mangos de los dispensadores
- B Gradilla de reactivos "paired-end" y de indexación
- C Gradilla de reactivos SBS de la celda de flujo A
- D Gradilla de reactivos SBS de la celda de flujo B

Software de HiSeq 4000

Hay tres aplicaciones de software instaladas en el ordenador del instrumento:

- Software de control de HiSeq 4000: La interfaz del software de control de HiSeq HD versión 3.4 le guía por los pasos necesarios para configurar un experimento de secuenciación. Durante el experimento, el software de control activa el hardware del instrumento, controla la fluídica, establece las temperaturas y ofrece un resumen visual de las estadísticas de calidad.
- Software de análisis en tiempo real: Integrado en el software de control, el análisis en tiempo real realiza la llamada de bases y asigna una puntuación de calidad a cada base de cada ciclo. Para obtener más información, consulte Análisis en tiempo real en la página 39.
- Software del visor del análisis de secuenciación: El visor del análisis de secuenciación (SAV) proporciona estadísticas de calidad detalladas.

lconos de estado

El icono de estado que se encuentra en la esquina superior derecha de cada pantalla muestra los cambios de condiciones, errores o advertencias que se producen durante la configuración de un experimento o durante este.

lcono de estado	Nombre de estado	Descripción
	Estado correcto	No hay cambios. El sistema está normal.

N.º de documento 15066496 v05 ESP N.º de material 20015630

lcono de estado	Nombre de estado	Descripción
i	Información	Solo información. No se requiere ninguna acción.
!	Atención	Información que puede requerir atención.
!	Advertencia	Las advertencias no detienen un experimento, pero pueden requerir una acción antes de continuar.
×	Error	Los errores normalmente detienen los experimentos y suelen requerir acciones antes de continuar con el experimento.

Cuando se produce un cambio de estado, el icono asociado parpadea para avisarle.

- Seleccione el icono para abrir la ventana de estado y visualizar una descripción de la condición.
- Seleccione Acknowledge (Aceptar) para aceptar el mensaje y Close (Cerrar) para cerrar el cuadro de diálogo.

Indicadores de actividad y del sensor

La pantalla Welcome (Bienvenida) contiene una serie de iconos en la esquina inferior derecha de la pantalla. Los iconos indican la actividad del instrumento y el estado de sus componentes específicos a partir de los sensores del instrumento.

En la imagen, aparecen de izquierda a derecha los indicadores de actividad que representan los motores X, Y y Z, la función de los componentes electrónicos, la cámara, el sistema de fluídica y las funciones de procesamiento.

Figura 5 Indicadores del sensor

De izquierda a derecha, los indicadores del sensor representan la temperatura de la celda de flujo A, la temperatura del refrigerador de reactivos, el estado de la transferencia de datos, el estado de BaseSpace Hub en la nube y la temperatura de la celda de flujo B.

Estado de la transferencia de datos

El paquete de software de HiSeq incluye un servicio de copia de experimentos que gestiona la transferencia de datos a la carpeta de resultados. Una opción de BaseSpace envía los datos de secuenciación y estado del instrumento a BaseSpace Sequence Hub o BaseSpace Onsite Sequence Hub.

Dos de los indicadores del sensor de la interfaz del software muestran el estado de la transferencia del servicio de copia de experimentos y de BaseSpace Sequence Hub.

Servicio de copia de experimentos

El estado de la transferencia del servicio de copia de experimentos determina si puede iniciar un nuevo experimento o formatear de forma segura la unidad de salida.

lcono de estado	Descripción
-	Los datos se están transfiriendo. No formatee la unidad de salida hasta que finalice la transferencia.
29. 29.	Los datos se están transfiriendo, pero la conexión de red es lenta. Puede configurar un experimento de secuenciación y formatear la unidad de salida en cuanto finalice la transferencia.
0	El servicio de copia de experimentos está desactivado.
_	El servicio de copia de experimentos está activado, pero no está transfiriendo datos.

BaseSpace Sequence Hub

Un indicador del sensor de BaseSpace muestra el estado de BaseSpace Sequence Hub. Una nube azul indica que la conexión está activa. Una nube gris indica que el software no se puede conectar. En la tabla siguiente se ofrece información adicional acerca de cada icono de estado.

lcono de estado	Descripción
	No conectado a BaseSpace Sequence Hub.
	Conectado a BaseSpace Sequence Hub pero sin transferencia de datos.
Ģ	Conectado a BaseSpace Sequence Hub y transfiriendo datos de cuatro experimentos o menos.
÷	Conectado a BaseSpace Sequence Hub y transfiriendo datos de cinco experimentos o más. Mientras se muestre este icono, el software de control no permitirá que se conecte a BaseSpace Sequence Hub ningún experimento nuevo.
÷	Desconectado de BaseSpace Sequence Hub con datos para transferir en cola.

Descripción general de los consumibles de secuenciación

Para realizar un experimento en HiSeq 4000, se necesita un kit de SBS de HiSeq 3000/4000 y un kit de generación de grupos. Los kits de generación de grupos están disponibles en las versiones "paired-end" (PE) y de lectura individual (SR).

Nombre del kit	N.º de catálogo
Kit de SBS de HiSeq 3000/4000 (300 ciclos)	FC-410-1003
Kit de SBS de HiSeq 3000/4000 (150 ciclos)	FC-410-1002
Kit de SBS de HiSeq 3000/4000 (50 ciclos)	FC-410-1001
Kit de generación de grupos de HiSeq 3000/4000 PE	PE-410-1001
Kit de generación de grupos de HiSeq 3000/4000 SR	GD-410-1001

Los kits de SBS incluyen los reactivos de secuenciación que se emplean en el sistema HiSeq, y cuentan con suficientes reactivos para secuenciar una celda de flujo. Los reactivos de secuenciación se suministran en botellas de 250 ml que se cargan directamente en las gradillas de reactivos. Las etiquetas de reactivos están codificadas con colores para reducir los errores a la hora de cargarlos.

Los kits de generación de grupos contienen los reactivos de generación de grupos que se emplean en cBot y los reactivos "paired-end" y de indexado que se utilizan en el sistema HiSeq 4000. Todos los kits de generación de grupos vienen con un kit de accesorios que incluye las juntas de celda de flujo, tapas de embudo para las botellas de reactivos SBS y un tubo de almacenamiento de celdas de flujo.

Celda de flujo estampada

El sistema HiSeq 4000 emplea una celda de flujo estampada con miles de millones de nanopocillos insertados en el cristal de la celda de flujo. La disposición ordenada incrementa el número de lecturas de resultados y la cantidad de datos de secuenciación generados.

La celda de flujo estampada se incluye en el kit de generación de grupos de HiSeq 3000/4000.

Figura 6 Ejemplo de grupos de una celda de flujo estampada

Capítulo 2 Primeros pasos

Inicio de HiSeq 4000	. 8
Personalización de los ajustes del sistema	. 9
Visualización y envío de datos del instrumento	.10
Consumibles proporcionados por el usuario	11

Inicio de HiSeq 4000

- 1 Inicie el ordenador de control del instrumento.
- 2 Espere a que el sistema se cargue y, a continuación, inicie sesión en el sistema operativo. De ser necesario, póngase en contacto con el administrador de las instalaciones para conocer el nombre de usuario y la contraseña.
- 3 Localice el interruptor de alimentación en la parte izquierda del instrumento y muévalo a la posición ON (Encendido).
- 4 Espere al menos tres minutos a que los dispositivos del instrumento se hayan configurado y a que se inicialice la unidad del instrumento llamada DoNotEject.
- 5 Cierre la ventana que se abre cuando se inicializa DoNotEject. Si la ventana no se abre, utilice MyComputer para comprobar esta unidad.

NOTA

No extraiga nunca la unidad flash DoNotEject ubicada dentro del chasis del instrumento ni modifique los archivos dentro de dicha unidad. Esta unidad contiene archivos de configuración del hardware y se inicia cada vez que el instrumento está encendido.

- 6 Para asegurarse de que queda espacio suficiente en el disco, archive en una ubicación de red los datos de experimentos anteriores que están guardados en el ordenador del instrumento. Realice un formateo rápido de las unidades O:\y S:\ para limpiar cualquier dato restante. Los discos duros deben estar vacíos para el correcto funcionamiento del software.
- 7 Abra HCS mediante el icono de acceso rápido situado en el escritorio del ordenador. Cuando se inicializa el software, se abre la pantalla Welcome (Bienvenida) y aparece el icono de inicialización en la esquina inferior derecha de la pantalla.

Prácticas recomendadas del instrumento y el ordenador de control

- ▶ No encienda el ordenador mientras el instrumento está en funcionamiento. Encienda siempre el ordenador antes de encender el instrumento.
- No apague nunca el instrumento mientras se esté ejecutando el software de control del instrumento.
- Espere un minuto tras apagar el instrumento para volver a encenderlo.
- Conecte los cables USB del instrumento, del monitor y del teclado en la parte trasera del ordenador antes de encender este último.
- Conecte el lector de códigos de barras y el ratón en los puertos USB de la parte delantera del ordenador.

Personalización de los ajustes del sistema

El software de control recoge la configuración personalizable del sistema para las preferencias de LIMS, las carpetas de experimentos y los dominios. La ventana Menu Options (Opciones del menú) tiene parámetros para definir el modelo de ID del experimento, las ubicaciones predeterminadas de las carpetas, la posibilidad de enviar información sobre el estado del instrumento, la autenticación de LIMS y los dominios de BaseSpace Enterprise.

Para personalizar la vista de la interfaz, seleccione **Menu | View** (Menú | Vista). Puede elegir entre ver la interfaz en pantalla completa o en una ventana, o minimizarla.

Definición de la configuración de las carpetas de experimentos

- 1 En la pantalla Welcome (Bienvenida), seleccione **Menu | Tools | Options** (Menú | Herramientas | Opciones) para abrir la ventana Menu Options (Opciones del menú).
- 2 Para personalizar la convención de nomenclatura de los nombres de las carpetas de experimentos, modifique la configuración del campo Run ID Template (Modelo de ID del experimento). Seleccione Reset (Restablecer) para borrar el campo.
- 3 Para determinar las ubicaciones de resultados predeterminadas, introduzca una ubicación para cada una de las carpetas siguientes:
 - Default Output Folder (Carpeta de resultados predeterminada): Carpeta de resultados predeterminada para los experimentos realizados en la celda de flujo A.
 - Default Output Folder2 (Carpeta de resultados predeterminada2): Carpeta de resultados predeterminada para los experimentos realizados en la celda de flujo B.

NOTA

Illumina recomienda establecer una ubicación de red para las carpetas de resultados. No obstante, si la ubicación difiere de la carpeta temporal de HiSeq, puede especificar una ubicación dentro de la unidad O:\. No utilice ni la unidad S:\ ni la C:\. La unidad S:\ se reserva para las operaciones del instrumento y la unidad C:\ no es lo suficientemente grande.

- 4 Para establecer la ubicación de los formularios de muestras de LIMS, introdúzcala en el campo **Run Setup Folder** (Carpeta de configuración del experimento).
- 5 Seleccione **OK** (Aceptar) para guardar el trabajo y cerrar la ventana Menu Options (Opciones del menú). Seleccione **Cancel** (Cancelar) para cerrar sin guardar.

Establecimiento de las preferencias de LIMS

- 1 En la pantalla Welcome (Bienvenida), seleccione **Menu | Tools | Options** (Menú | Herramientas | Opciones) para abrir la ventana Menu Options (Opciones del menú).
- 2 Introduzca la siguiente configuración para LIMS:
 - LIMS Server (Servidor LIMS): El nombre del servidor para interacciones con LIMS de Illumina compatibles.
 - LIMS User Name (Nombre de usuario de LIMS): El nombre de usuario utilizado para la autenticación en LIMS de Illumina.
 - LIMS Password (Contraseña de LIMS): La contraseña de LIMS utilizada para la autenticación en LIMS de Illumina.
- 3 Seleccione **OK** (Aceptar) para guardar el trabajo y cerrar la ventana Menu Options (Opciones del menú). Seleccione **Cancel** (Cancelar) para cerrar sin guardar.

Configuración de un dominio

Si está suscrito a BaseSpace Enterprise, sírvase de las instrucciones siguientes para configurar el dominio.

- 1 En la pantalla Welcome (Bienvenida), seleccione **Menu | Tools | Options** (Menú | Herramientas | Opciones) para abrir la ventana Options (Opciones).
- 2 Seleccione una opción de servidor de BaseSpace:
 - **Cloud** (en la nube): conéctese a su dominio de BaseSpace Sequence Hub.
 - **Onsite** (in situ): conéctese a su dominio de BaseSpace Onsite Sequence Hub.
- 3 Introduzca el dominio del servidor seleccionado.
- 4 Seleccione **OK** (Aceptar) para guardar el trabajo y cerrar la ventana Options (Opciones). Seleccione **Cancel** (Cancelar) para cerrar sin guardar.

Visualización y envío de datos del instrumento

El botón Menu (Menú) de la pantalla Welcome (Bienvenida) y la ventana Menu Options (Opciones del menú) ofrecen opciones para la visualización y el envío de datos del instrumento.

- Para ver la información sobre el hardware del instrumento, las versiones de software y la información de contacto del servicio de asistencia técnica, seleccione Menu | About (Menú | Acerca de).
- Seleccione Menu | Tools | Options (Menú | Herramientas | Opciones) y, a continuación, seleccione Send instrument health data to Illumina to help Illumina improve its products (Enviar información sobre el estado del instrumento a Illumina para ayudar a Illumina a mejorar sus productos) para activar el servicio de supervisión proactiva de Illumina. El nombre del ajuste en la interfaz de software puede diferir del nombre que figura en esta guía, dependiendo de la versión de HCS que se esté utilizando. Con este ajuste activado, los datos del rendimiento del instrumento se envían a Illumina. Estos datos ayudan a Illumina a solucionar problemas de forma más sencilla y a detectar posibles fallos, lo que permite llevar a cabo tareas de mantenimiento proactivo y maximizar el tiempo de actividad del instrumento. Para obtener más información sobre las ventajas de este servicio, consulte la *nota técnica proactiva de Illumina (n.º de documento 100000052503).*

Tenga en cuenta lo siguiente en relación con este servicio:

- No envía datos de secuenciación.
- ▶ Es necesario que el instrumento esté conectado a una red con acceso a Internet.
- Está activado de manera predeterminada. Para desactivar este servicio, desactive el ajuste Send instrument health data to Illumina to help Illumina improve its products (Enviar información sobre el estado del instrumento a Illumina para ayudar a Illumina a mejorar sus productos).

NOTA

Este ajuste se vuelve a activar tras una actualización de software. Si no desea enviar datos de rendimiento del instrumento a Illumina, desactive este servicio cada vez que se actualice el software.

Consumibles proporcionados por el usuario

Consumible	Proveedor	Finalidad
Paños humedecidos en alcohol isopropilo al 70 % o en etanol al 70 %	WWR, n.º de catálogo 95041-714 Proveedor de laboratorio general	Limpieza de la celda de flujo y de la platina de la celda de flujo.
Bidón, 6 litros mínimo	Proveedor de laboratorio general	Preparación de una solución de lavado de mantenimiento.
Tubos de centrifugado, 250 ml	Corning, n.º de catálogo 430776	Gradillas de reactivos SBS, posiciones que contienen PW1. Lavado del instrumento.
Tubos cónicos de 15 ml	Corning, n.º de catálogo 430052	Gradilla de reactivos PE, posiciones que contienen PW1. Lavado del instrumento. Recogida y medición de volúmenes de residuos.
Guantes desechables sin polvo	Proveedor de laboratorio general	Uso general.
Toallita de laboratorio sin pelusa	WWR, n.º de catálogo 21905-026	Limpieza del soporte de la celda de flujo.
Papel para lentes, 4 × 6 pulgadas	VWR, n.º de catálogo 52846-001	Limpieza de la celda de flujo.
ProClin 300, 50 ml	Sigma-Aldrich, n.º de catálogo 48912-U	Lavado de mantenimiento.
Tween 20, líquido viscoso, 100 ml	Sigma-Aldrich, n.º de catálogo P7949	Lavado de mantenimiento.
Pinzas de plástico con punta cuadrada	McMaster-Carr, n.º de catálogo 7003A22	Eliminación de las juntas de celda de flujo.
Agua de laboratorio, 18 MΩ	Millipore	Gradillas de reactivos SBS y PE, posiciones que contienen PW1. Lavado del instrumento.

Capítulo 3 Preparación de reactivos

Introducción	13	2
Preparación de los reactivos SBS	1:	2
Preparación de los reactivos "paired-end" y de indexado	1:	2

Introducción

Antes de configurar el experimento, prepare todos los reactivos para la secuenciación: los reactivos SBS, los reactivos de indexado y los reactivos "paired-end". Durante la configuración del experimento, todos los reactivos se cargan cuando se lo solicita el software. No es necesario regresar al instrumento durante el experimento para recargarlos.

Los reactivos de secuenciación se pueden preparar durante la generación de grupos.

Preparación de los reactivos SBS

Los reactivos SBS se cargan en el instrumento al inicio del experimento. Sírvase de las siguientes instrucciones para descongelar e inspeccionar los reactivos HCM, HIM y HSM.

Descongelación de los reactivos SBS

- 1 Extraiga los reactivos HCM, HIM y HSM del almacenamiento a una temperatura de entre -25 °C y -15 °C.
- 2 Descongélelos a una temperatura de entre 2 °C y 8 °C durante unas 16 horas. También puede descongelar los reactivos HIM y HSM mediante un baño en agua desionizada a temperatura ambiente durante aproximadamente 90 minutos. Descongele HCM en un baño de agua *independiente*.

NOTA

Cámbiese siempre de guantes después de manipular el reactivo HCM.

- 3 Invierta cada botella para mezclarlos.
- 4 Inspeccione el reactivo HSM para asegurarse de que no se observan patrones circulares.
- 5 Deje reposar en hielo los reactivos HIM y HSM.
- 6 Deje reposar en hielo el HCM por *separado* para evitar la contaminación cruzada.

Preparación de los reactivos "paired-end" y de indexado

Los reactivos "paired-end" y de indexado se cargan en el instrumento al inicio del experimento. Se emplean durante las lecturas del índice y el paso de resíntesis de la lectura 2 de un experimento de secuenciación.

Siga las instrucciones que se indican para preparar los reactivos "paired-end" y de indexado únicamente en caso de que realice la secuenciación de una celda de flujo "paired-end" o de bibliotecas indexadas en una celda de flujo de lectura individual.

ADVERTENCIA

Este conjunto de reactivos contiene sustancias químicas potencialmente peligrosas. Evite su inhalación, ingestión y el contacto con la piel o los ojos, puesto que puede provocar lesiones. Utilice un equipo de protección, incluidos gafas, guantes y batas de laboratorio adecuados para el riesgo de exposición. Manipule los reactivos utilizados como residuos químicos y deséchelos de conformidad con las normativas y leyes regionales, nacionales y locales aplicables. Para obtener más información sobre seguridad, salud y medioambiente, consulte la hoja de datos de seguridad en support.illumina.com/sds.html.

Descongelación y preparación de reactivos "paired-end" y de indexado

- 1 Extraiga los reactivos siguientes, almacenados a una temperatura de entre –25 °C y –15 °C.
 - Para un experimento en una celda de flujo "paired-end": HAM, HDR, HLM2, HP11, HP14, HPM y HRM. Para bibliotecas no indexadas, no es necesario HP14.
 - Para un experimento en una celda de flujo de lectura individual:
 - Bibliotecas de doble índice: HDR, HP14 y HRM.
 - Bibliotecas de un solo índice: HDR y HP14.
- 2 Descongele los reactivos en un vaso de precipitados lleno de agua desionizada a temperatura ambiente durante aproximadamente 20 minutos.
- 3 Invierta cada tubo para mezclar la solución.
- 4 Centrifugue a 1000 r/min durante 1 minuto.
- 5 Deje reposar en hielo los reactivos HAM, HLM2 y HRM.
- 6 Deje reposar a temperatura ambiente los reactivos HDR, HP11, HP14, HP14 y HPM.

Capítulo 4 Secuenciación

Introducción	14
Flujo de trabajo de secuenciación	14
Introducción de parámetros del experimento	15
Carga y cebado de reactivos	18
Carga de la celda de flujo de secuenciación	22
Supervisión del experimento	25
Descarga de reactivos	26
Realización de un lavado con agua	26
Formateo rápido de las unidades de salida y de almacenamiento temporal	27

Introducción

Para realizar un experimento en HiSeq 4000, prepare todos los reactivos y, a continuación, el software le solicitará que configure el experimento. Los pasos para la configuración del experimento incluyen la introducción de los parámetros del experimento, la carga y el cebado de reactivos, la carga de la celda de flujo y la realización de una comprobación de fluídica.

Los pasos para la configuración del experimento se organizan en tres fichas: Run Configuration (Configuración del experimento), Pre-Run Setup (Configuración previa al experimento) e Initiate Run (Iniciar experimento).

- Las pantallas de configuración del experimento contienen listas desplegables, casillas de verificación o campos de texto para los parámetros del experimento. Utilice el lector de códigos de barras portátil para leer el ID del kit de reactivos o de la celda de flujo, o introduzca el ID con ayuda del teclado táctil. El icono de teclado se encuentra a la derecha de los campos de texto.
- Seleccione Next (Siguiente) para pasar a la siguiente pantalla o seleccione Back (Atrás) para volver a la pantalla anterior.
- En cualquier momento durante los pasos de configuración del experimento, puede seleccionar Cancel (Cancelar) para abandonar la configuración del experimento y volver a la pantalla Welcome (Bienvenida).

Visite la página de especificaciones de HiSeq 4000 en el sitio web de Illumina para obtener información sobre la duración del experimento y otras especificaciones de rendimiento.

Estratificación de experimentos

Puede iniciar un nuevo experimento en la celda de flujo A o en la celda de flujo B si hay un experimento en curso en la celda de flujo adyacente. Para obtener más información, consulte *Escalonamiento de experimentos en la celda de flujo A y la celda de flujo B* en la página 38.

Flujo de trabajo de secuenciación

Prepare la celda de flujo y los reactivos para el experimento.

Siga las indicaciones de la interfaz del software de control e introduzca los parámetros del experimento.

N.º de documento 15066496 v05 ESP N.º de material 20015630

Cargue los reactivos SBS para la lectura 1 y la lectura 2. Si procede, cargue los reactivos "pairedend" y de indexado.

Utilice una celda de flujo usada para confirmar el flujo correcto. Cebe los reactivos SBS y mida los residuos de cebado.

Cargue una celda de flujo agrupada HiSeq 3000/4000 y confirme que el flujo es correcto.

Inicie el experimento de secuenciación. [Opcional] Después del ciclo 2, inspeccione el informe de primera base y, a continuación, continúe con la lectura 1.

Cuando finalice el experimento, descargue los reactivos. Lave el instrumento.

Introducción de parámetros del experimento

Configure el experimento introduciendo los parámetros en las pantallas de la ficha Run Configuration (Configuración del experimento). El software le guía por las sucesivas pantallas para que especifique la conectividad de BaseSpace Sequence Hub, introduzca los ID de los consumibles, seleccione las opciones de indexación y registre otros parámetros.

Pantalla de almacenamiento

- 1 En la pantalla Welcome (Bienvenida), seleccione **Sequence** (Secuencia) para abrir la pantalla Storage (Almacenamiento).
- 2 **[Opcional]** Conéctese a BaseSpace Sequence Hub o BaseSpace Onsite Sequence Hub como se indica a continuación.
 - a Seleccione Connect to BaseSpace (Conectarse a BaseSpace).
 - b Seleccione BaseSpace o BaseSpace Onsite.
 - c Si ha seleccionado BaseSpace, elija una de las opciones siguientes:
 - Storage and Analysis (Almacenamiento y análisis): Envía los datos del experimento a BaseSpace Sequence Hub para la supervisión remota y el análisis de los datos. Con esta opción, se precisa una hoja de muestras.
 - Run Monitoring Only (Solo supervisión del experimento): Envía solamente los archivos InterOp a BaseSpace Sequence Hub para poder supervisar el experimento de forma remota.
 - d Inicie sesión en BaseSpace Sequence Hub o en BaseSpace Onsite Sequence Hub con su correo electrónico y la contraseña de la cuenta de Mylllumina.
- 3 Seleccione Browse (Examinar) para ir a la ubicación de carpeta de resultados deseada.
- 4 Compruebe que la configuración de vistas en miniatura sea **Save All Thumbnails** (Guardar todas las vistas en miniatura).

N.º de documento 15066496 v05 ESP N.º de material 20015630

El software guarda automáticamente todas las imágenes de las vistas en miniatura. Una imagen en miniatura es una muestra de imágenes de muchas placas de cada columna de placas o sector, combinada en una imagen.

5 Seleccione **Next** (Siguiente).

Pantalla de configuración de la celda de flujo

La pantalla Flow Cell Setup (Configuración de la celda de flujo) registra información acerca de la celda de flujo utilizada en el experimento. Todos los campos son obligatorios.

- 1 Escanee o introduzca el ID de celda de flujo (número de código de barras) de la celda de flujo que se ha de secuenciar.
- 2 Seleccione el tipo de celda de flujo adecuada, HiSeq 3000/4000 PE o HiSeq 3000/4000 SR.
- 3 Introduzca el nombre del experimento que aparecerá en cada pantalla y que ayudará a identificar el experimento en curso.
- 4 Introduzca un nombre de usuario.
- 5 Seleccione **Next** (Siguiente).

Pantalla de configuración avanzada

- 1 [Opcional] Seleccione la casilla de verificación Confirm First Base (Confirmar primera base). Después del ciclo 2, se genera automáticamente un informe de primera base para cada experimento y se coloca en el nivel de raíz de la carpeta del experimento. Al seleccionar esta opción, puede confirmar el informe de primera base para proseguir con el experimento. De lo contrario, el experimento continúa sin mostrar el cuadro de diálogo de confirmación.
- [Opcional] En la imagen de la celda de flujo, seleccione los carriles que desea eliminar del experimento.
 De forma predeterminada, se incluyen todos los carriles. La alineación de PhiX se realiza automáticamente para todos los carriles.
- 3 Seleccione Next (Siguiente).

Pantalla de fórmulas

En la pantalla de fórmulas se genera automáticamente una fórmula a partir de la información introducida.

- 1 Seleccione una opción Index Type (Tipo de índice):
 - No Index (Sin índice): Realiza un experimento de lectura individual o "paired-end" no indexado.
 - Single Index (Un solo índice): Realiza un experimento de lectura individual o "paired-end" con una lectura del índice.
 - Dual Index (Doble índice): Realiza un experimento de lectura individual o "paired-end" con dos lecturas del índice.
 - Custom (Personalizado): Realiza un experimento de lectura individual o "paired-end" con un número de ciclos personalizado de lecturas del índice.
- 2 Introduzca el número de ciclos para la lectura 1 y la lectura 2, según sea necesario.

NOTA

El número de ciclos realizados en una lectura es de un ciclo más que el número de ciclos analizados. Por ejemplo, para realizar 125 ciclos para la lectura 1, introduzca 126. 3 Si seleccionó la opción de indexado **Custom** (Personalizado), introduzca el número de ciclos para cada lectura del índice.

NOTA

Las longitudes de lectura no tienen por qué coincidir.

- 4 Confirme los siguientes parámetros de química rellenados automáticamente.
 - SBS: HiSeq 3000/4000 SBS Kit (Kit de SBS de HiSeq 3000/4000): Muestra el proceso químico de SBS empleado en la lectura 1 y en la lectura 2.
 - Index: HiSeq 3000/4000 Sequencing Primer (Índice: Cebador de secuenciación de HiSeq 3000/4000) o HiSeq 3000/4000 Dual Index Sequencing Primer (Cebador de secuenciación de doble índice de HiSeq 3000/4000): Muestra el proceso químico utilizado para las lecturas del índice.
 - PE turnaround: HiSeq 3000/4000 PE (Respuesta PE: PE de HiSeq 3000/4000) o HiSeq 3000/4000 PE Dual Index (Doble índice PE de HiSeq 3000/4000): Muestra el proceso químico utilizado para las resíntesis "paired-end".
- 5 **[Opcional]** Seleccione la casilla de verificación **Use Existing Recipe** (Usar fórmula existente) para utilizar una fórmula personalizada.

Pantalla de hoja de muestras

Las hojas de muestras son opcionales salvo si utiliza BaseSpace Sequence Hub para realizar análisis de datos.

- 1 Seleccione **Browse** (Examinar) para localizar la hoja de muestras.
- 2 Seleccione Next (Siguiente).

Pantalla de reactivos

La pantalla de reactivos registra información sobre el kit de reactivos utilizado para el experimento.

- 1 Lea o introduzca el ID del código de barras del kit de reactivos SBS.
- 2 En el caso de experimentos "paired-end", lea o introduzca el ID del kit de generación de grupos.
- 3 Seleccione el kit de reactivos SBS para el experimento:
 - Seleccione 300 Cycles (300 ciclos) para un kit de 300 ciclos. Los ciclos restantes se establecen en 325 de forma predeterminada.
 - Seleccione 150 Cycles (150 ciclos) para un kit de 150 ciclos. Los ciclos restantes se establecen en 174 de forma predeterminada.
 - Seleccione 50 Cycles (50 ciclos) para un kit de 50 ciclos. Los ciclos restantes se establecen en 74 de forma predeterminada.
 - Seleccione Custom (Personalizado) para un kit parcial o varios kits de 50 ciclos. En el campo Cycles Remaining (Ciclos restantes), introduzca el número de ciclos SBS que se espera que duren los reactivos.

NOTA

El campo Cycles Remaining (Ciclos restantes) se rellena automáticamente a partir del ID del kit de SBS. El software cuenta el número de ciclos introducidos. Cuando los ciclos están en un nivel bajo, el software le solicita que cargue reactivos nuevos.

4 Seleccione **Prime SBS Reagents** (Cebar reactivos SBS) para cebar los reactivos.

5 Seleccione **Next** (Siguiente).

Pantalla de revisión

- 1 Revise los parámetros del experimento en la pantalla Review (Revisión).
- 2 Seleccione Next (Siguiente) para continuar o Back (Atrás) para modificar los parámetros.

Carga y cebado de reactivos

Tras introducir los parámetros del experimento, cargue los reactivos SBS, de indexado y "paired-end" para el experimento y, a continuación, cebe los reactivos mediante el sistema de fluídica. El software le guía a través de estos pasos mediante una serie de pantallas en la ficha Pre-Run Setup (Configuración previa al experimento).

Carga de reactivos SBS

1 Invierta cada botella para mezclarlos.

PRECAUCIÓN

Mezcle y cargue HCM en último lugar, cuando haya cargado los demás reactivos, a fin de evitar la contaminación cruzada. Deseche siempre los guantes y sustitúyalos por un par nuevo después de manipular la botella de HCM.

- 2 Vuelva a tapar cada botella con una tapa de embudo.
- 3 Abra la puerta del compartimento de reactivos.
- 4 Levante los dispensadores de la gradilla de reactivos SBS como se indica a continuación.
 - a Tire del mango del dispensador hacia usted y levántelo.
 - b Suelte el mango en la ranura del extremo superior del canal. Asegúrese de que el mango se encuentra colocado de forma segura en la ranura.
- 5 Deslice la gradilla de reactivos hacia el exterior del compartimento de reactivos con el mango de la gradilla.
- 6 Coloque cada una de las botellas en la gradilla, en la posición numerada correspondiente. Asegúrese de que el extremo cónico de la botella está apoyado en la muesca de la base de la gradilla.

Posición	Reactivo	Descripción
1	HIM	Mezcla para incorporación de HT
2	PW1	25 ml de PW1 o agua de laboratorio
3	HSM	Mezcla para lectura de HT
4	HB1	Tampón de SBS 1 de HT
5	HB2	Tampón de SBS 2 de HT
6	HB2	Tampón de SBS 2 de HT
7	HCM	Mezcla para clivaje de HT
8	HB2	Tampón de SBS 2 de HT

Tabla 1 Posiciones de los reactivos SBS

7 Utilice un nuevo par de guantes de látex sin polvo.

- 8 Deslice la gradilla hacia dentro del compartimento de reactivos y alinéela con la guía elevada del suelo del compartimento.
- 9 Baje los dispensadores e introdúzcalos en las botellas de reactivos SBS como se indica a continuación.
 - a Tire del mango del dispensador hacia usted y bájelo.
 - b Compruebe que los dispensadores no se doblan cuando se bajan para introducirlos en las tapas de embudo.
 - c Suelte el mango en la ranura del extremo inferior del canal.

Carga de reactivos "paired-end" y de indexado

- 1 Invierta cada botella para mezclarlos.
- 2 Levante los dispensadores de la gradilla de reactivos "paired-end" según se indica a continuación.
 - a Tire del mango hacia usted y levántelo.
 - b Suelte el mango en la ranura del extremo superior del canal. Asegúrese de que el mango se encuentra colocado de forma segura en la ranura.
- 3 Deslice la gradilla hacia el exterior del compartimento de reactivos con el mango de la gradilla.
- 4 Si está realizando un experimento de lectura individual no indexado, sáltese el paso 5 y cargue un tubo cónico de 15 ml con 10 ml de PW1 o agua de laboratorio en cada posición.
- 5 Quite las tapas de los tubos de reactivo y coloque cada tubo en la gradilla en la posición numerada asociada o en el color de la etiqueta correspondiente.

Posición	Reactivo	Descripción
10	HRM	Mezcla para resíntesis de HT
11	HLM2	Mezcla para linealización de HT 2
12	PW1	10 ml de PW1 o de agua de laboratorio
13	HAM	Mezcla para amplificación de HT
14	НРМ	Premezcla para amplificación de HT
15	HDR	Mezcla de desnaturalización de HT (contiene formamida)
16	HP11	Mezcla para cebador (lectura 2)
17	HP14*	Mezcla para cebador de indexado
18	PW1	10 ml de PW1 o de agua de laboratorio
19	PW1	10 ml de PW1 o de agua de laboratorio

Tabla 2 Celda de flujo "paired-end"

* HP14 solo es necesaria para experimentos indexados. Si no se utiliza HP14, cargue un tubo cónico de 15 ml con 10 ml de PW1 o agua de laboratorio.

Tabla 3	Celda	de	flujo	de	lectura	individual
---------	-------	----	-------	----	---------	------------

Posición Reactivo		Reactivo	Descripción
	10	HRM*	Mezcla para resíntesis de HT
	11	PW1	10 ml de PW1 o de agua de laboratorio
	12	PW1	10 ml de PW1 o de agua de laboratorio
	13	PW1	10 ml de PW1 o de agua de laboratorio
	14	PW1	10 ml de PW1 o de agua de laboratorio

N.º de documento 15066496 v05 ESP N.º de material 20015630

Posición	Reactivo	Descripción
15	HDR	Mezcla de desnaturalización de HT (contiene formamida)
16	PW1	10 ml de PW1 o de agua de laboratorio
17	HP14	Mezcla para cebador de índice 1
18	PW1	10 ml de PW1 o de agua de laboratorio
19	PW1	10 ml de PW1 o de agua de laboratorio

* Se requiere HRM solamente para experimentos de doble índice. Si no se utiliza HRM, cargue un tubo cónico de 15 ml con 10 ml de PW1 o agua de laboratorio.

- 6 Deslice la gradilla hacia dentro del compartimento y alinéela con la guía elevada del suelo del compartimento.
- 7 Baje los dispensadores e introdúzcalos en los tubos de reactivos "paired-end" del siguiente modo.
 - a Tire del mango hacia usted y bájelo.
 - b Compruebe los dispensadores para asegurarse de que no se doblan cuando se bajan para introducirlos en los tubos.
 - c Suelte el mango en la ranura del extremo inferior del canal.
- 8 Marque la casilla de verificación **PW1 (25 ml) loaded in Position 2** (PW1 [25 ml] cargado en la posición 2) y, a continuación, seleccione **Next** (Siguiente).

Cebado de reactivos

Entre los pasos para el cebado de reactivos figuran la carga de una celda de flujo para el cebado, la confirmación del flujo correcto y, a continuación, el inicio del cebado.

PRECAUCIÓN

Utilice siempre una celda de flujo **usada** para cebar los reactivos. Puede utilizar la celda de flujo de un experimento anterior para el cebado de reactivos en un experimento posterior o para un lavado posterior al experimento.

Carga de una celda de flujo para el cebado

- 1 Escanee o introduzca el ID (número del código de barras) de la celda de flujo de cebado.
- 2 Enjuague la celda de flujo para el cebado con agua de laboratorio. Séquela con una toallita para limpiar lentes o una toallita sin pelusa.
- 3 Límpiela con toallitas con alcohol y con una toallita para limpiar lentes.
- 4 Colóquela en el soporte de la celda de flujo con los puertos de entrada y salida hacia *abajo* y el código de barras en el lado derecho. Asegúrese de que la flecha del extremo izquierdo de la celda de flujo, que indica la dirección del flujo, apunta hacia el instrumento.
- 5 Deslice suavemente la celda de flujo hacia los pasadores guía superiores y de la parte derecha, hasta que se detenga.

A B D 1 2 C

Figura 7 Celda de flujo encastrada entre los pasadores guía superiores y de la parte derecha

- A Pasador guía superior
- B Pasadores guía derechos
- 6 Retire la mano de la celda de flujo para evitar que se desalinee.
- 7 Lentamente, mueva la palanca de la celda de flujo a la posición 1 para activar el vacío y fijar la celda de flujo.

Cuando la palanca de la celda de flujo parpadee en color verde, el vacío está activado. Si la palanca no es verde, consulte *Posibles problemas de configuración de experimentos* en la página 35.

8 Espere unos cinco segundos y, a continuación, mueva lentamente la palanca de la celda de flujo a la posición 2.

Cuando el color de la palanca de la celda de flujo sea verde fijo, los distribuidores están en posición y la celda de flujo se puede usar.

9 Asegúrese de marcar la casilla de verificación Vacuum Engaged (Vacío activado) y seleccione Next (Siguiente).

Confirmación del flujo adecuado

Un flujo correcto confirma que la celda de flujo y las juntas están bien instaladas y que el distribuidor está acoplado.

- 1 Seleccione la posición 2 en la lista desplegable.
- 2 Confirme los siguientes valores predeterminados:
 - ▶ Volume (Volumen): **125**
 - Aspirate Rate (Velocidad de aspiración): 250
 - Dispense Rate (Velocidad de dispensación): 2000
- 3 Seleccione Pump (Dispensar).
- 4 Compruebe que no existen burbujas en los carriles de la celda de flujo ni fugas cerca de los distribuidores.
- 5 Si detecta una presencia excesiva de burbujas, realice lo siguiente:
 - a Compruebe si las juntas están obstruidas.
 - b Reduzca la velocidad de aspiración a 100.
 - c Dispense otros 125 µl de agua a la celda de flujo.
 - d Si el problema persiste, retire la celda de flujo, repita los pasos de limpieza y vuelva a cargarla.

N.º de documento 15066496 v05 ESP N.º de material 20015630

6 Seleccione Next (Siguiente).

Colocación de los tubos e inicio del cebado

1 Extraiga los ocho tubos de residuos correspondientes a la celda de flujo adecuada del contenedor de residuos.

Figura 8 Colocación de los tubos

- A Tubos de residuos de la celda de flujo para las posiciones de los reactivos 1-8
- B Tubos de la bomba de condensación
- Coloque cada tubo de residuos en un tubo independiente y vacío de 15 ml.
 El residuo se recoge y se mide cuando acaba el cebado.
- 3 Seleccione Start Prime (Iniciar cebado). Supervise el progreso del cebado en la pantalla de cebado.
- 4 Al finalizar el cebado, mida el residuo y compruebe que el volumen de cada tubo sea de 1,75 ml para un total de **14 ml**.

El total se calcula de la siguiente forma:

- > 250 μ l por cada posición SBS salvo la posición 2 (250 \times 7 = 1,75 ml)
- 1,75 ml por carril (1,75 × 8 = 14 ml)
- 5 Devuelva los tubos de residuos al contenedor de residuos.
- 6 Seleccione **Next** (Siguiente).

Carga de la celda de flujo de secuenciación

Cargar la celda de flujo para la secuenciación implica eliminar la celda de flujo para el cebado, limpiar el soporte de la celda de flujo, cargar la celda de flujo agrupada y confirmar el flujo adecuado.

Retirada de la celda de flujo usada

- 1 Mueva lentamente la palanca de la celda de flujo a la posición 1 para desacoplar los distribuidores.
- 2 Mueva lentamente la palanca de la celda de flujo a la posición 0 para desacoplar la junta de vacío y desbloquear la celda de flujo.
- 3 Levante la celda de flujo usada del soporte de la celda de flujo.

Limpieza del soporte de la celda de flujo

- 1 Utilice un nuevo par de guantes de látex sin polvo.
- 2 Limpie la superficie del soporte de la celda de flujo con una toallita sin pelusa humedecida con agua de laboratorio para eliminar las sales.
- 3 Limpie la superficie del soporte de la celda de flujo con una toallita humedecida con alcohol o con una toallita sin pelusa humedecida con etanol o isopropanol. Procure que no entre alcohol en los orificios de vacío o alrededor de los distribuidores.
- 4 Seque la platina con una toallita de laboratorio sin pelusa si fuera necesario.
- 5 Compruebe que el soporte de la celda de flujo no tiene pelusas y que los orificios de vacío no están obstruidos.

Carga de la celda de flujo de secuenciación

- 1 Coloque la celda de flujo en el soporte de la celda de flujo con los puertos de entrada y salida hacia *abajo* y el código de barras en el lado derecho. Asegúrese de que la flecha del extremo izquierdo de la celda de flujo, que indica la dirección del flujo, apunta hacia el instrumento.
- 2 Deslice suavemente la celda de flujo hacia los pasadores guía superiores y de la parte derecha, hasta que se detenga.

Figura 10 Celda de flujo encastrada entre los pasadores guía superiores y de la parte derecha

- A Pasador guía superior
- B Pasadores guía derechos

N.º de documento 15066496 v05 ESP N.º de material 20015630

- 3 Retire la mano de la celda de flujo para evitar que se desalinee posteriormente.
- 4 Lentamente, mueva la palanca de la celda de flujo a la posición 1 para activar el vacío y fijar la celda de flujo.

Cuando la palanca de la celda de flujo parpadee en color verde, el vacío está activado. Si la palanca no es verde, consulte *Posibles problemas de configuración de experimentos* en la página 35.

5 Espere unos cinco segundos y, a continuación, mueva lentamente la palanca de la celda de flujo a la posición 2.

Cuando el color de la palanca de la celda de flujo sea verde fijo, los distribuidores están en posición y la celda de flujo se puede usar.

6 Asegúrese de marcar la casilla de verificación Vacuum Engaged (Vacío activado) y seleccione Next (Siguiente).

Confirmación del flujo adecuado

Un flujo correcto confirma que la celda de flujo y las juntas están bien instaladas y que el distribuidor está acoplado.

- 1 Seleccione la posición 5 en la lista desplegable.
- 2 Introduzca los valores siguientes:
 - ▶ Volume (Volumen): 250
 - Aspirate Rate (Velocidad de aspiración): 250
 - Dispense Rate (Velocidad de dispensación): 2000
- 3 Seleccione **Pump** (Dispensar).
- 4 Inspeccione la celda de flujo para comprobar si hay burbujas en los carriles o fugas cerca de los distribuidores.
- 5 Si detecta una presencia excesiva de burbujas, realice lo siguiente:
 - a Compruebe si las juntas del distribuidor están obstruidas.
 - b Repita el proceso con la solución 6 para evitar agotar la posición 5.
 - c Reduzca la velocidad de aspiración a 100.
 - d Dispense otros 250 µl en la celda de flujo.
- 6 Seleccione **Next** (Siguiente).
- 7 Asegúrese de que la palanca de la celda de flujo muestra el color verde y, a continuación, cierre la puerta del compartimento de la celda de flujo.
- 8 Compruebe que las casillas de verificación Vacuum Engaged (Vacío activado) y Door Closed (Puerta cerrada) estén seleccionadas y, a continuación, seleccione Next (Siguiente).
- 9 Seleccione Start (Iniciar) para comenzar el experimento de secuenciación.

Supervisión del experimento

1 Supervise los criterios de medición del experimento desde la pantalla de resumen del experimento.

Figura 11 Pantalla de resumen del experimento

- A Barra de progreso: Supervise el número de ciclos finalizados.
- B Imagen de celda de flujo: Supervise los carriles a los que se ha tomado imagen.
- C Gráfico del sistema de fluídica: Amplíe la sección del sistema de fluídica para supervisar los pasos de química.
- D Configuración del experimento: Consulte los parámetros del experimento actual.
- E Gráfico de análisis: Supervise las puntuaciones de calidad por ciclo.
- F Gráfico de imágenes: Supervise las intensidades por ciclo. Solo se muestra una imagen en miniatura para cada sector leído. En la interfaz del software no aparecen otras imágenes.

Informe de primera base

Si ha elegido la opción de confirmar primera base durante la configuración del experimento, se abrirá el cuadro de diálogo de confirmación de primera base automáticamente después de que finalice la adquisición de imágenes del segundo ciclo. El experimento se pone en pausa en este momento.

- 1 Revise el informe de primera base en el cuadro de diálogo de confirmación.
- 2 Si los resultados son satisfactorios, seleccione Continue (Continuar).

Visualización de los criterios de medición

Cuando los criterios de medición estén disponibles, el visor del análisis de secuenciación (SAV) se abrirá automáticamente y los mostrará. Los datos aparecen en forma de diagramas, gráficos y tablas. Si desea obtener más información, consulte la *Guía del usuario del visor del análisis de secuenciación (n.º de documento 15020619)*.

1 Para ver los datos actualizados, seleccione **Refresh** (Actualizar) en cualquier momento durante el experimento.

Descarga de reactivos

- 1 Cuando finalice el experimento, abra la puerta del compartimento de reactivos.
- 2 Levante los dispensadores de la gradilla de reactivos SBS y "paired-end" correspondientes según se indica a continuación.
 - a Tire del mango del dispensador hacia fuera.
 - b Levante el mango del dispensador hacia arriba mientras tira de él hacia fuera.
 - c Suelte el mango del dispensador en la ranura del extremo superior del canal. Asegúrese de que el mango del dispensador se encuentra colocado de forma segura en la ranura.
- 3 Deslice la gradilla de reactivos hacia el exterior del compartimento de reactivos utilizando los mangos de la gradilla.
- 4 Retire todas las botellas de cada gradilla de reactivos.

ADVERTENCIA

Este conjunto de reactivos contiene sustancias químicas potencialmente peligrosas. Evite su inhalación, ingestión y el contacto con la piel o los ojos, puesto que puede provocar lesiones. Utilice un equipo de protección, incluidos gafas, guantes y batas de laboratorio adecuados para el riesgo de exposición. Manipule los reactivos utilizados como residuos químicos y deséchelos de conformidad con las normativas y leyes regionales, nacionales y locales aplicables. Para obtener más información sobre seguridad, salud y medioambiente, consulte la hoja de datos de seguridad en support.illumina.com/sds.html.

Realización de un lavado con agua

Es necesario efectuar un lavado con agua después de cada experimento de secuenciación para limpiar el sistema y comprobar el sistema de fluídica. Existe la opción de realizar un lavado de mantenimiento como alternativa al lavado con agua posterior al experimento. Si desea obtener instrucciones, consulte *Realización de un lavado de mantenimiento* en la página 28. Para obtener instrucciones, consulte la Guía del sistema HiSeq 4000 (n.º de documento 15066496).

Si el instrumento ha permanecido inactivo durante un día o más, realice un lavado con agua antes de empezar un nuevo experimento de secuenciación.

- 1 En la pantalla Welcome (Bienvenida), seleccione Wash | Water (Lavado | Agua).
- 2 Seleccione Yes (Si) para lavar las posiciones de los reactivos "paired-end" y, a continuación, seleccione Next (Siguiente).
- 3 Cargue el instrumento con agua de laboratorio de la siguiente forma:
 - a Llene ocho botellas SBS con 250 ml de agua de laboratorio.
 - b Llene 10 tubos de PE con 12 ml de agua de laboratorio.

NOTA

Los tubos y las botellas de lavado se suelen sustituir cada seis meses. No obstante, el agua se cambia aproximadamente una vez a la semana.

- 4 Asegúrese de que hay cargada una celda de flujo usada. Si es necesario, cargue una celda de flujo usada.
- 5 Seleccione **Next** (Siguiente).

N.º de documento 15066496 v05 ESP N.º de material 20015630

- 6 Realice una comprobación del sistema de fluídica de la siguiente manera:
 - a Seleccione la solución 2 en la lista desplegable.
 - b Acepte los valores predeterminados de la bomba.
 - c Seleccione **Pump** (Dispensar).
 - d Compruebe que no existan burbujas en los carriles de la celda de flujo ni fugas cerca de los distribuidores.
- 7 Retire los tubos de residuos de la celda de flujo correspondiente del contenedor de residuos.
- 8 Ate los tubos de residuos con papel Parafilm y mantenga todos los extremos al mismo nivel.
- 9 Introduzca los extremos de los tubos agrupados en una botella de 250 ml.
- 10 Seleccione Next (Siguiente) para iniciar el lavado con agua.

Posiciones	Tiempo aproximado del experimento
Ocho posiciones SBS	20 minutos
Ocho posiciones SBS y 10 posiciones "paired-end"	60 minutos

11 Al finalizar el lavado, mida el volumen administrado.

Posiciones	Volumen total administrado	Volumen administrado por carril	
Ocho posiciones SBS	32 ml	4 ml	
Ocho posiciones SBS y 10 posiciones "paired-end"	72 ml	9 ml	

12 Desenvuelva los tubos de residuos y devuélvalos a la botella de residuos.

Formateo rápido de las unidades de salida y de almacenamiento temporal

Una vez que finalice la transferencia de datos, realice un formateo rápido de las unidades (O:\) de salida y (S:\) de almacenamiento temporal. Con este proceso, se limpia la unidad para un experimento posterior sin eliminar archivos del sistema ni realizar tareas de mantenimiento del instrumento importantes.

Para poder empezar un experimento con una longitud de 2 × 151, se requiere un mínimo de 2 TB. Si el espacio en el disco es inferior al umbral de seguridad durante el experimento, el software pone en pausa el experimento y coloca la celda de flujo en un estado seguro. Tras liberar espacio en el disco, el experimento se reanuda automáticamente.

NOTA

Los registros de mantenimiento del instrumento se almacenan en la unidad C:\. Por lo tanto, no existe ningún riesgo si se realiza un formateo rápido de las unidades O:\ y S:\ durante un lavado del instrumento.

- 1 En Windows, abra Computer (Equipo) para mostrar la lista de unidades del ordenador.
- 2 Haga clic con el botón derecho del ratón sobre la unidad O:\ y seleccione **Format** (Formatear).
- 3 En el cuadro de diálogo Format (Formatear), seleccione la casilla de verificación Quick Format (Formateo rápido).
- 4 Seleccione **Start** (Iniciar).
- 5 Repita los pasos del 1 al 4 para limpiar la unidad S:\.

N.º de documento 15066496 v05 ESP N.º de material 20015630

Capítulo 5 Mantenimiento

Introducción	.28
Realización de un lavado de mantenimiento	.28
Inactividad del instrumento	. 33
Apagado del instrumento	. 33

Introducción

Los procedimientos de mantenimiento garantizan un rendimiento constante del instrumento.

- Apague el instrumento o déjelo inactivo durante el tiempo que no se vaya a utilizar.
- Además de los lavados de agua tras cada experimento, lleve a cabo lavados de mantenimiento de forma periódica para mantener la fluídica.
 Los lavados regulares del instrumento mantienen su rendimiento al limpiar el sistema de fluídica y evitar la

Los lavados regulares del instrumento mantienen su rendimiento al limpiar el sistema de fluídica y evitar la acumulación de sal, así como la contaminación cruzada de reactivos.

Mantenimiento preventivo

Illumina recomienda programar un servicio de mantenimiento preventivo cada año. Si no dispone de contrato de servicios, póngase en contacto con el comercial de su región o con el servicio de asistencia técnica de Illumina para acordar un servicio de mantenimiento preventivo facturable.

Realización de un lavado de mantenimiento

Realice un lavado de mantenimiento cuando el software se lo solicite cada 10 días u, opcionalmente, después de realizar un experimento. Un lavado de mantenimiento tarda unos 90 minutos y realiza 1 o 2 flujos de trabajo, en función de si dispone de ProClin 300 o no:

- Lavado con Tween 20 y ProClin 300: Lava el sistema con una solución preparada por el usuario de Tween 20 y ProClin 300. Consulte Lavado de mantenimiento con Tween 20 y ProClin 300 en la página 28.
- Lavado con Tween 20: Lava el sistema con una solución preparada por el usuario de Tween 20 y puede requerir un lavado con agua. Consulte Lavado de mantenimiento con Tween 20 en la página 31.

Si la pantalla Load Gasket (Cargar junta) aparece antes de un lavado de mantenimiento, deberá sustituir las juntas del distribuidor delantero y trasero antes de comenzar con el lavado.

Lavado de mantenimiento con Tween 20 y ProClin 300

Preparación de la solución de lavado de mantenimiento

Prepare 5 litros de solución de lavado de mantenimiento para su uso con un instrumento. Esta solución se puede almacenar hasta 30 días a temperatura ambiente y usar hasta tres veces durante este período.

Deseche la solución de lavado de acuerdo con las normativas gubernamentales en materia de seguridad de su región.

- 1 Combine los siguientes volúmenes, añadiendo el agua en primer lugar, para diluir Tween 20:
 - Agua de laboratorio (225 ml)
 - Tween 20 (25 ml)

Estos volúmenes dan como resultado Tween 20 al 10 % aproximadamente.

2 Coloque una barra de agitación en un bidón vacío con una capacidad mínima de 6 litros.

N.º de documento 15066496 v05 ESP N.º de material 20015630

- 3 Combine los siguientes volúmenes en el bidón, añadiendo el agua en primer lugar:
 - Agua de laboratorio (750 ml)
 - Tween 20 al 10 % (250 ml)
 - ProClin 300 (1,5 ml)

Estos volúmenes dan lugar a una solución que se compone de Tween 20 al 2,5 % y de ProClin 300 al 0,15 % aproximadamente.

- 4 Mezcle bien en una placa de agitación.
- 5 Añada 4 litros de agua de laboratorio.
 Estos volúmenes dan lugar a una solución que se compone de Tween 20 al 0,5 % y de ProClin 300 al 0,03 % aproximadamente.
- 6 Siga agitando hasta que esté bien mezclada.
- 7 Déjela en un contenedor cerrado a temperatura ambiente.

Tween 20 y ProClin 300

- 1 En la pantalla Welcome (Bienvenida), seleccione Wash | Maintenance (Lavado | Mantenimiento).
- 2 Si utiliza una solución de lavado de mantenimiento nueva, prepare los componentes de lavado como se indica a continuación.
 - a Llene ocho botellas de SBS con 250 ml de solución de lavado nueva.
 - b Llene 10 tubos de PE con 12 ml de solución de lavado nueva.
 - c Asigne cada botella y tubo a una posición en la gradilla de reactivos. Mantenga esas asignaciones para lavados posteriores con el fin de evitar que se produzca una contaminación cruzada debido a los reactivos presentes en los dispensadores.
- 3 Si ha guardado la solución de lavado de mantenimiento de un experimento anterior, cargue la solución en el instrumento como se indica a continuación.
 - a Rellene con la solución almacenada e inviértala para mezclarla. No rellene el instrumento con la misma solución más de dos veces.
 - b Cargue las botellas y los tubos en las posiciones indicadas de la gradilla de reactivos.

NOTA

Sustituir los tubos y las botellas de lavado cada mes suele ser suficiente.

- 4 Vacíe la botella de residuos.
- 5 Seleccione Next (Siguiente).
- 6 Retire la celda de flujo de su platina y déjela a un lado.
- 7 Utilice un nuevo par de guantes de látex sin polvo.
- 8 Presione ligeramente un lado de la junta delantera hasta que se levante el otro lado. Utilice unas pinzas para coger y extraer la junta. Repita el procedimiento para retirar la junta trasera.

Figura 12 Retirada de las juntas usadas de los distribuidores

- 9 Coloque una junta nueva en cada ranura de los extremos delantero y trasero del soporte de la celda de flujo. Presione ligeramente hasta que se coloque.
- 10 Cargue de nuevo la celda de flujo que retiró para instalar las juntas nuevas.
- 11 Asegúrese de que la casilla Vacuum Engaged (Vacío activado) esté marcada y, a continuación, seleccione Next (Siguiente).
- 12 Lleve a cabo una comprobación del sistema de fluídica utilizando los valores predeterminados de bombeo:
 - a Seleccione la solución 2 en la lista desplegable.
 - b Seleccione **Pump** (Dispensar).
 - c Compruebe que no existan burbujas en los carriles de la celda de flujo ni fugas cerca de los distribuidores.
 - d Si observa una corriente constante de burbujas, sustituya la junta y vuelva a comprobar el sistema de fluídica.
- 13 Retire los tubos de residuos de la celda de flujo adecuada del contenedor de residuos.
- 14 Ate los ocho tubos de residuos con papel Parafilm y manténgalos al mismo nivel.
- 15 Introduzca los extremos de los tubos agrupados en una botella de 250 ml.
- 16 Seleccione Next (Siguiente) para iniciar el lavado.
- 17 Una vez finalizado el lavado, seleccione Return to Start (Volver a iniciar).
- 18 Mida el volumen administrado.

Posiciones	Volumen administrado
Ocho posiciones SBS	74 ml
Diez posiciones "paired-end"	52 ml
Todas las posiciones	15,75 ml por carril

NOTA

Todas las botellas y tubos se llenan hasta su capacidad correspondiente para garantizar que los dispensadores se enjuaguen. Sin embargo, el volumen administrado para cada posición varía de forma que las botellas y los tubos contienen volúmenes diferentes cuando ha finalizado el lavado.

19 Desenvuelva los tubos de residuos y devuélvalos al contenedor de residuos.

Lavado de mantenimiento con Tween 20

Preparación de la solución de lavado de mantenimiento

Prepare siempre una solución de lavado nueva para los lavados de mantenimiento con Tween 20. Prepare 5 litros de solución de lavado de mantenimiento. Este volumen es suficiente para lavar los dos lados de un instrumento.

Deseche la solución de lavado de acuerdo con las normativas gubernamentales en materia de seguridad de su región.

- 1 Combine los siguientes volúmenes, añadiendo el agua en primer lugar, para diluir Tween 20:
 - Agua de laboratorio (225 ml)
 - ▶ Tween 20 (25 ml)

Estos volúmenes dan como resultado Tween 20 al 10 % aproximadamente.

- 2 Coloque una barra de agitación en un bidón vacío con una capacidad mínima de 6 litros.
- 3 Combine los siguientes volúmenes en el bidón, añadiendo el agua en primer lugar:
 - Agua de laboratorio (750 ml)
 - Tween 20 al 10 % (250 ml)
 - Estos volúmenes dan lugar a una solución que se compone de Tween 20 al 2,5 % aproximadamente.
- 4 Mezcle bien en una placa de agitación.
- 5 Añada 4 litros de agua de laboratorio para conseguir una solución de Tween 20 al 0,5 % aproximadamente.
- 6 Siga agitando hasta que esté bien mezclada.
- 7 Continúe de forma inmediata con la configuración del lavado.

Lavado con Tween 20

- 1 En la pantalla Welcome (Bienvenida), seleccione Wash | Maintenance (Lavado | Mantenimiento).
- 2 Cargue el instrumento con solución de lavado de mantenimiento nueva del siguiente modo.
 - a Llene ocho botellas de SBS con 250 ml de solución de lavado nueva.
 - b Llene 10 tubos de PE con 12 ml de solución de lavado nueva.
- 3 Vacíe la botella de residuos.
- 4 Seleccione **Next** (Siguiente).
- 5 Retire la celda de flujo de su platina y déjela a un lado.
- 6 Utilice un nuevo par de guantes de látex sin polvo.
- 7 Presione ligeramente un lado de la junta delantera hasta que se levante el otro lado. Utilice unas pinzas para coger y extraer la junta. Repita el procedimiento para retirar la junta trasera.

Figura 13 Retirada de las juntas usadas de los distribuidores

- 8 Coloque una junta nueva en cada ranura de los extremos delantero y trasero del soporte de la celda de flujo. Presione ligeramente hasta que se coloque.
- 9 Cargue de nuevo la celda de flujo que retiró para instalar las juntas nuevas.
- 10 Asegúrese de que la casilla Vacuum Engaged (Vacío activado) esté marcada y, a continuación, seleccione Next (Siguiente).
- 11 Lleve a cabo una comprobación del sistema de fluídica utilizando los valores predeterminados de bombeo:
 - a Seleccione la solución 2 en la lista desplegable.
 - b Seleccione **Pump** (Dispensar).
 - c Compruebe que no existan burbujas en los carriles de la celda de flujo ni fugas cerca de los distribuidores.
 - d Si observa una corriente constante de burbujas, sustituya la junta y vuelva a comprobar el sistema de fluídica.
- 12 Retire los tubos de residuos de la celda de flujo adecuada del contenedor de residuos.
- 13 Ate los ocho tubos de residuos con papel Parafilm y manténgalos al mismo nivel.
- 14 Introduzca los extremos de los tubos agrupados en una botella de 250 ml.
- 15 Seleccione Next (Siguiente) para iniciar el lavado.
- 16 Una vez finalizado el lavado, seleccione Return to Start (Volver a iniciar).
- 17 Mida el volumen administrado.

Posiciones	Volumen administrado
Ocho posiciones SBS	74 ml
Diez posiciones "paired-end"	52 ml
Todas las posiciones	15,75 ml por carril

NOTA

Todas las botellas y tubos se llenan hasta su capacidad correspondiente para garantizar que los dispensadores se enjuaguen. Sin embargo, el volumen administrado para cada posición varía de forma que las botellas y los tubos contienen volúmenes diferentes cuando ha finalizado el lavado.

18 Desenvuelva los tubos de residuos y devuélvalos al contenedor de residuos.

Lavado con agua

Si el instrumento va a estar inactivo durante más de 5 días tras el lavado con Tween 20, realice un lavado con agua. El lavado con agua permite aclarar los restos de Tween 20 del sistema de fluídica.

- 1 En la pantalla Welcome (Bienvenida), seleccione Wash | Water Wash (Lavado | Lavado con agua).
- 2 Cargue el instrumento con agua de laboratorio de la siguiente forma.
 - a Llene ocho botellas SBS con al menos 20 ml de agua de laboratorio.
 - b Llene 10 tubos de PE con 10 ml de agua de laboratorio.

PRECAUCIÓN

No reutilice el agua, las botellas ni los tubos utilizados para el lavado Tween 20. El agua puede estar contaminada con reactivos de los dispensadores.

- 3 Cargue las botellas y los tubos en el instrumento en la gradilla de reactivos correcta.
- 4 Seleccione **Next** (Siguiente) para iniciar el lavado.
- 5 Al finalizar el lavado, mida el volumen administrado.

Posiciones	Volumen administrado
Ocho posiciones SBS	32 ml
Ocho posiciones SBS y 10 posiciones "paired-end"	72 ml

6 Desenvuelva los tubos de residuos y devuélvalos al contenedor de residuos.

Inactividad del instrumento

Siga estas instrucciones con el objetivo de preparar el instrumento para que permanezca inactivo durante un máximo de 10 días. Para los plazos de tiempo superiores a 10 días, es mejor que apague el instrumento.

- 1 Realice un lavado de mantenimiento para lavar el sistema.
- 2 Deje la celda de flujo en la platina de la celda de flujo con la palanca de dicha celda en la posición 2. Deje los distribuidores en la posición elevada.
- 3 Cargue 10 ml de agua de laboratorio en cada posición de las gradillas de reactivos y, a continuación, baje los dispensadores.
- 4 Antes de utilizar el instrumento, realice un lavado con agua.

Apagado del instrumento

Lleve a cabo el siguiente procedimiento para preparar de forma segura la fluídica y apagar el sistema. Apague el instrumento solo si no piensa utilizarlo durante los próximos 10 días o más. Si piensa utilizar el instrumento en los próximos 10 días, es mejor que lo deje en el modo inactivo.

- 1 Realice un lavado de mantenimiento para lavar el sistema.
- 2 Retire la celda de flujo de la platina.
- 3 Limpie la superficie del soporte de la celda de flujo con una toallita humedecida con alcohol o con una toallita sin pelusa humedecida con etanol o isopropanol.

PRECAUCIÓN

Procure que no entre alcohol en los orificios de vacío o alrededor de los distribuidores. Si es necesario, utilice una toallita de laboratorio sin pelusa para secar la platina.

- 4 Cargue 10 ml de agua de laboratorio en cada posición de las gradillas de reactivos y, a continuación, baje los dispensadores.
- 5 Apague el instrumento.
- 6 Para reiniciar el instrumento:
 - a Cargue agua en todas las posiciones de los reactivos.
 - b Encienda el instrumento.
 - c Lleve a cabo un lavado con agua.

Apéndice A Solución de problemas

Archivo de registro	.35
Posibles problemas de configuración de experimentos	35
Realización de una comprobación de fluídica	36
Pausa o finalización de un experimento en HiSeq 4000	36
Escalonamiento de experimentos en la celda de flujo A y la celda de flujo B	38
Posible rehibridación del cebador de lectura 1	38
Escalonamiento de experimentos en la celda de flujo A y la celda de flujo B Posible rehibridación del cebador de lectura 1	30 38 38

Archivo de registro

El archivo de registro enumera los errores que se hayan producido en el software de control. Utilice este archivo para solucionar posibles problemas.

Para acceder al archivo de registro, seleccione **Menu** | **Tools** | **Show Log** (Menú | Herramientas | Mostrar archivo de registro) en la pantalla Welcome (Bienvenida).

Posibles problemas de configuración de experimentos

Problema	Causa posible	Acción
El software no se ha inicializado.	El software no pudo iniciar dispositivos de hardware internos.	Cierre el mensaje de error y, a continuación, vuelva a iniciar el software del instrumento. Si el problema persiste, reinicie el ordenador del instrumento. Si va a reiniciar el ordenador, primero deberá apagar el instrumento para garantizar que la unidad DoNotEject se reconoce correctamente. Si el problema persiste después de reiniciar el ordenador del instrumento, apague el instrumento, espere un mínimo de 60 segundos y, a continuación, reinicie el instrumento.
La palanca de la celda de flujo está en naranja.	La celda de flujo no se ha asentado correctamente. No se ha sellado al vacío. Los distribuidores no se elevaron.	Retire la celda de flujo y repita los pasos de limpieza. Asegúrese de que las juntas están presentes y bien asentadas. Vuelva a cargar la celda de flujo. Si los pasos anteriores no funcionan, intente sustituir las juntas y, a continuación, vuelva a cargar la celda de flujo.
La palanca de la celda de flujo parpadea en color naranja.	Se proporciona vacío, pero no es adecuado.	Retire la celda de flujo y repita los pasos de limpieza. Asegúrese de que las juntas están presentes y bien asentadas. Vuelva a cargar la celda de flujo. Si los pasos anteriores no funcionan, intente sustituir las juntas y, a continuación, vuelva a cargar la celda de flujo.
La palanca de la celda de flujo parpadea en color verde.	La presión de vacío es adecuada.	Cambie la palanca de la celda de flujo a la posición 2.
Suministro de fluidos deficiente.	Posibles burbujas en el sistema.	Vuelva a colocar la celda de flujo y confirme que los orificios están orientados hacia abajo . Busque un precipitado blanco alrededor de las juntas. En caso de presencia de precipitado, cambie las juntas. Cambie siempre las juntas antes de realizar un lavado de mantenimiento del instrumento. Confirme que los dispensadores se encuentran totalmente bajados y que dichos dispensadores se encuentran en contacto con los reactivos.

Problema	Causa posible	Acción
La pérdida de registro en la lectura 1 se caracteriza por la ausencia de intensidades y por un 0 % de grupos que superan el filtro en una parte de la celda de flujo. El porcentaje de grupos que superan el filtro disminuye bruscamente de la placa 1 (entrada) a la placa 28	La celda de flujo no se ha asentado correctamente.	Si el experimento no ha terminado la respuesta "paired-end", detenga el experimento y rehibride la celda de flujo. Antes de reiniciar el experimento, consulte <i>Carga de la celda de flujo</i> <i>de secuenciación</i> en la página 22 para asegurarse de que la celda de flujo está bien asentada. Si el experimento ha terminado la respuesta "paired-end", configure un nuevo experimento con una celda de flujo nueva.

Realización de una comprobación de fluídica

Lleve a cabo una comprobación del sistema de fluídica durante la instalación del instrumento y cuando solucione problemas relacionados con la fluídica.

- 1 Seleccione Check (Comprobar) en la pantalla Welcome (Bienvenida).
- 2 Realice la lectura o introduzca el ID de celda de flujo de lavado (número de código de barras) de la celda de flujo para el cebado. Asegúrese de utilizar una celda de flujo **usada** para este paso.
- 3 Cargue la celda de flujo usada en el instrumento.
- 4 Cargue ocho botellas de SBS con PW1 o con agua de laboratorio y cargue las botellas en la gradilla de reactivos de SBS.
- 5 Seleccione la solución 2 en la lista desplegable.
- 6 Confirme los siguientes valores predeterminados:
 - ▶ Volume (Volumen): 250
 - Aspirate Rate (Velocidad de aspiración): 250
 - Dispense Rate (Velocidad de dispensación): 2000
- 7 Seleccione **Pump** (Dispensar).
- 8 Compruebe que no existan burbujas en los carriles de la celda de flujo ni fugas cerca de los distribuidores.
- 9 Si detecta una presencia excesiva de burbujas:
 - a Compruebe si las juntas del distribuidor están obstruidas.
 - b Reduzca la velocidad de aspiración a 100.
 - c Dispense otros 250 µl de agua a la celda de flujo.

Pausa o finalización de un experimento en HiSeq 4000

Al finalizar un experimento, no se ofrece la opción de guardar los datos ni de reanudar el experimento. Puede que tenga que pausarlo para comprobar los componentes del experimento o configurar un experimento en la celda de flujo adyacente.

Pausa de un experimento

Si es necesario, puede poner en pausa un experimento para comprobar sus componentes, como los volúmenes de reactivos. En condiciones normales, no es necesario ponerlo en pausa.

RTA2 se reanuda automáticamente tras reanudar un experimento puesto en pausa, de forma que el experimento puede reanudarse sin perder datos. Para obtener más información, consulte *Análisis en tiempo real* en la página 39.

- 1 Desde la pantalla de resumen del experimento, seleccione **Pause** | **Normal Pause** (Pausar | Pausa normal).
- 2 Seleccione Yes (Sí) para confirmar el comando.
 El software finaliza los análisis químicos actuales o el comando de adquisición de imágenes y coloca la celda de flujo en un estado seguro.
- 3 Seleccione **Resume** (Reanudar) para reanudar el experimento.

Cambio de reactivos durante un experimento

Si comenzó el experimento con un volumen parcial de reactivos, utilice la función Change Reagents (Cambiar reactivos) para poner en pausa el experimento y volver a llenar los reactivos.

No es necesario el cebado.

- 1 En la pantalla de resumen del experimento, seleccione **Pause** (Pausar) para abrir el menú de pausa.
- 2 Seleccione Change Reagents (Cambiar reactivos).
- Seleccione Yes (Si) para confirmar el comando de pausa.
 El software finaliza los análisis químicos actuales o el comando de adquisición de imágenes y coloca la celda de flujo en un estado seguro. A continuación, se abre la pantalla de reactivos.
- 4 Introduzca los siguientes parámetros:
 - ▶ El ID del kit de reactivos de los nuevos reactivos.
 - El número de ciclos que se espera que duren los reactivos.
- 5 Seleccione Next (Siguiente) para continuar con la carga de reactivos.

Finalización de un experimento

Si el procesamiento de RTA2 se interrumpe, el software no reanuda el procesamiento y los datos del experimento no se guardan. Por lo tanto, no se puede reanudar un experimento una vez se ha detenido.

PRECAUCIÓN

La finalización de un experimento en HiSeq 4000 es definitiva.

- 1 Para finalizar el experimento, seleccione Abort (Cancelar). Confirme o cancele la instrucción.
- 2 Al confirmar las instrucciones, se abre la pantalla Welcome (Bienvenida).
- 3 Continúe con los procedimientos posteriores al experimento.

NOTA

Si un experimento se detiene durante la lectura 1, es posible realizar la rehibridación de cebadores en cBot. Tras la rehibridación de cebadores, inicie un nuevo experimento en HiSeq 4000 para secuenciar la celda de flujo.

Escalonamiento de experimentos en la celda de flujo A y la celda de flujo B

- 1 Seleccione Pause | Normal Pause (Pausar | Pausa normal).
- 2 Espere a que el software finalice el paso de química o de adquisición de imágenes actual. El sistema se coloca de manera automática en un estado seguro.
- Compruebe que el experimento está en pausa.
 Cuando se pausa un experimento, se muestra el botón Resume (Reanudar).
- 4 Configure el experimento nuevo.
- 5 Después de cargar la nueva celda de flujo para el nuevo experimento, cierre la puerta del compartimento.
- 6 Seleccione Start (Iniciar) para comenzar el experimento nuevo.
- 7 En la celda de flujo adyacente, seleccione **Resume** (Reanudar) para reanudar el experimento pausado. El software controla de forma automática los procesos de química y de adquisición de imágenes en las dos celdas de flujo.

Posible rehibridación del cebador de lectura 1

Si los criterios de medición de la lectura 1 arrojan números bajos de grupos, intensidades bajas u otros problemas, puede realizar una rehibridación del cebador de lectura 1 para recuperar la celda de flujo. La rehibridación del cebador de lectura 1 se realiza en cBot y no daña los grupos de la celda de flujo.

Para la hibridación del cebador de lectura 1 en una celda de flujo estampada de HiSeq 4000, es preciso contar con los siguientes consumibles de Illumina:

- ▶ Kit de rehibridación de cebadores de HiSeq 3000/4000 de cBot (n.º de catálogo GD-305-2001)
- ▶ Distribuidor de cBot de HiSeq (n.º de catálogo SY-401-2015)

Para obtener más información, consulte *Rehibridación del cebador de lectura 1 en una celda de flujo de HiSeq 3000/4000 (n.º de documento 15058794)*.

Apéndice B Análisis en tiempo real

Descripción general del análisis en tiempo real	39
Flujo de trabajo de análisis en tiempo real	40

Descripción general del análisis en tiempo real

El sistema HiSeq 4000 utiliza una implementación del software de análisis en tiempo real denominada RTA2. RTA2 se ejecuta en el ordenador del instrumento y extrae las intensidades de las imágenes, realiza una llamada de bases y asigna una puntuación de calidad a dicha llamada. RTA2 y el software de control del sistema se comunican a través de una interfaz web HTTP y de archivos de memoria compartidos. Si RTA2 se interrumpe, el procesamiento no se reanuda y los datos del experimento no se guardan.

ΝΟΤΑ

No se calcula el rendimiento de desmultiplexado, por lo que la ficha Index (Índice) del visor del análisis de secuenciación (SAV) aparece vacía.

Archivos de entrada

RTA2 precisa los archivos de entrada siguientes:

- Las imágenes de las placas contenidas en la memoria del sistema local.
- RunInfo.xml, que es un archivo que genera automáticamente el software de control al inicio del experimento. A partir de este archivo, RTA2 lee el nombre del experimento, el número de ciclos, si una lectura ha sido indexada y el número de placas de la celda de flujo.
- RTA.exe.config, que es un archivo de configuración de software en formato XML.

RTA2 recibe comandos del software de control que incluyen información acerca de la ubicación del archivo RunInfo.xml y acerca de si se ha especificado una carpeta de resultados opcional.

Archivos de resultados

Las imágenes de cada canal se transfieren en memoria a RTA2 como placas. A partir de estas imágenes, RTA2 produce un resultado principal como un conjunto de archivos de filtro y archivos de llamadas de bases clasificados por calidad. Con otros archivos también se pueden generar archivos de resultados elementales.

- Archivos de llamada de bases: Para cada placa que se analiza, se genera un archivo de llamada de bases (*.bcl) comprimido para cada placa por ciclo. El archivo de llamadas de bases contiene la llamada de bases y la puntuación de calidad asociada.
- Archivos de filtro: Cada placa produce información de filtro que se incluye en un archivo de filtro (*.filter) para cada placa a lo largo de todo el experimento. El archivo de filtro determina si los grupos superan o no el filtro.
- Archivos de ubicación de grupos: Un archivo de ubicación de grupos (s.locs) contiene las coordenadas X e Y para cada grupo de la celda de flujo.

Los archivos de resultados principales se utilizan para los análisis de datos posteriores. Utilice el software de conversión bcl2fastq para el desmultiplexado y la conversión FASTQ. Para convertir datos procedentes del sistema HiSeq 4000, utilice el software bcl2fastqv2.16 o una versión posterior. Para obtener información sobre la versión del software actual y descargar información, consulte la página de asistencia de HiSeq 4000 en el sitio web de Illumina.

RTA2 proporciona criterios de medición en tiempo real de experimentos de calidad guardados como archivos InterOp. Los archivos InterOp son archivos binarios que contienen datos relacionados con placas, ciclos y lecturas y se requieren para la visualización de datos en el visor del análisis de secuenciación. Para ver los criterios de medición generados por RTA2, utilice SAV v1.10.2 o una versión posterior.

Para obtener información detallada sobre cada archivo de resultados, consulte *Archivos de resultados de secuenciación* en la página 45.

Gestión de errores

RTA2 crea archivos de registro y los guarda en la carpeta RTALogs. Los errores se registran en un archivo de errores con formato *.tsv.

Los archivos de error y de registro siguientes se transfieren a la ubicación de destino de los resultados finales tras completar el procesamiento:

- ▶ *GlobalLog*.tsv contiene un resumen de los eventos importantes del experimento.
- ▶ *LaneNLog*.tsv enumera los eventos de procesamiento de cada carril.
- ▶ *Error*.tsv enumera los errores que se han producido durante un experimento.
- ▶ *WarningLog*.tsv enumera las advertencias que se han producido durante un experimento.

Transferencia de datos

A lo largo del experimento, RTA2 solicita la transferencia de datos al servicio de copia de experimentos, el software que gestiona la transferencia a la ubicación de la carpeta de resultados especificada. Si se utiliza BaseSpace Sequence Hub, BaseSpace Broker gestiona la transferencia de datos a BaseSpace Sequence Hub. Si la conexión de red se interrumpe, RTA2 continúa con el procesamiento y registra los datos de forma local. La transferencia de datos se reanuda una vez restablecida la conexión.

NOTA

Asegúrese de que la conexión de red satisfaga los requisitos mínimos para el envío de datos del experimento a BaseSpace Sequence Hub. Para obtener más información, consulte la guía de preparación del centro.

Cuando finaliza el procesamiento, RTA2 crea un archivo de marcador denominado RTAComplete.txt. La transferencia de datos termina cuando se genera este archivo. El indicador del sensor situado en la parte inferior de la pantalla muestra el estado de la transferencia. Para obtener más información, consulte *Indicadores de actividad y del sensor* en la página 5.

Flujo de trabajo de análisis en tiempo real

Generación de plantillas	Sirve para asignar las ubicaciones de grupos.
Registro y extracción de intensidad	Registra la ubicación de cada grupo en la celda de flujo estampada y determina un valor de intensidad para cada grupo.
Corrección de la matriz de color	Corrige la comunicación cruzada entre canales.
Corrección empírica de hebras retrasadas	Corrige los efectos de hebra retrasada y hebra adelantada.
Llamada de bases	Determina una llamada de bases para cada grupo.

N.º de documento 15066496 v05 ESP N.º de material 20015630

Puntuación de calidad

ad Asigna una puntuación de calidad a cada llamada de bases.

Generación de plantillas

La generación de plantillas determina la posición de cada grupo en una placa mediante coordenadas X e Y. La plantilla se utiliza como referencia en el paso siguiente de registro y extracción de intensidad.

Gracias a la matriz de la celda de flujo de tramas, todas las posiciones de grupos se predeterminan de acuerdo con el número de filas, el número de columnas y la distancia entre los nanopocillos de la celda de flujo. Para obtener más información, consulte *Celda de flujo estampada* en la página 7.

Las posiciones de los grupos se recopilan en un archivo de ubicación de grupos (s.locs) para todo el experimento.

Registro y extracción de intensidad

El registro y la extracción de intensidad se inician tras generar la plantilla de las posiciones de grupos.

- El registro transforma las ubicaciones de los grupos de la plantilla a la ubicación de la imagen en cada uno de los cuatro canales de color.
- La extracción de intensidad determina un valor de intensidad para cada grupo de la plantilla para una imagen determinada.

Si se produce un error en el registro de cualquier imagen en un ciclo, no se generará ninguna llamada de bases para esa placa en ese ciclo. Utilice el SAV para examinar las imágenes en miniatura e identificar las imágenes que no se han podido registrar.

Corrección de la matriz de color

Tras el registro y la extracción de intensidad, RTA2 corrige la comunicación cruzada entre canales. Las interferencias se producen cuando un grupo muestra intensidad en el canal C y, al mismo tiempo, cierta intensidad en el canal A, por ejemplo. Mediante el uso de una matriz de color de 4 x 4, RTA2 genera intensidades corregidas de matriz con una comunicación cruzada reducida o inexistente, y equilibra diferencias de intensidad global entre canales de color.

Corrección empírica de hebras retrasadas

Durante la reacción de secuenciación, cada cadena de ADN de un grupo se amplía en una base por cada ciclo. Las hebras retrasadas y hebras adelantadas se producen cuando una cadena queda fuera de su lugar con respecto al ciclo de incorporación.

- La hebra retrasada se produce cuando una base se atrasa.
- La hebra adelantada se produce cuando una base se avanza.

- A Lectura con una base con hebra retrasada
- B Lectura con una base con hebra adelantada

RTA2 corrige los efectos de la hebra retrasada y la hebra adelantada mediante el uso del algoritmo de corrección empírica de hebras que maximiza la calidad de los datos en cada ciclo durante el experimento.

Llamada de bases

Tras corregir las intensidades sin procesar para que no se creen interferencias, hebras retrasadas ni hebras adelantadas, el canal con mayor intensidad es la llamada correspondiente a ese grupo en ese ciclo. La llamada de bases en el sistema HiSeq 4000 mediante el uso de RTA2 comienza después del ciclo 3.

La llamada de bases determina una base (A, C, G o T) para cada grupo de una placa determinada en un ciclo específico. Este tipo de llamadas se guardan en archivos de llamadas de bases (*.bcl), que son archivos binarios con 1 byte por llamada y puntuación de calidad. Cada archivo de llamadas de bases contiene la llamada de bases y la puntuación de calidad asociada. Para realizar una llamada de bases, los grupos deben superar antes el filtro de castidad. Se denomina "ausencia de llamadas" a aquellos casos en los que los grupos no superan el filtro o no se les puede llamar porque no están dentro de la imagen o falla el registro de imagen. La ausencia de llamadas se representa como (N).

Grupos que superan el filtro

Durante los primeros 25 ciclos de la lectura 1, el filtro de castidad elimina los grupos de baja calidad de los resultados del análisis. Los grupos superan el filtro si no más de una llamada de bases presenta un valor de castidad inferior a 0,6 en los primeros 25 ciclos. La castidad es la relación de la mayor intensidad de base dividida por la suma de la mayor intensidad de base y la segunda mayor intensidad de base. El porcentaje de grupos que superan el filtro se representa en los informes de análisis como %PF.

La celda de flujo estampada del sistema HiSeq 4000 posee una matriz ordenada de grupos. Los pocillos vacíos sin grupos y los pocillos policionales en los que existe más de una secuencia se incluyen en el recuento de grupos sin procesar, pero no superan el filtro. Por tanto, la matriz ordenada de una celda de flujo estampada genera un porcentaje relativamente bajo de grupos que superan el filtro.

Figura 15 Pocillos vacíos y policionales (incluidos en el recuento de grupos sin procesar)

Figura 16 Pocillos con grupos que no superan el filtro (representados en gris)

Puntuación de calidad

Una puntuación de calidad, o puntuación Q, es una predicción de la probabilidad de obtener una llamada de bases incorrecta. Una puntuación Q superior implica que la llamada de bases tiene una calidad mayor y es más probable que sea correcta.

La puntuación Q es una forma concisa de comunicar probabilidades de error pequeñas. Q(X) representa puntuaciones de calidad, donde X es la puntuación. En la siguiente tabla figura la relación entre la puntuación de calidad y la probabilidad de error.

Puntuación Q, Q(X)	Probabilidad de error
Q40	0,0001 (1 entre 10 000)
Q30	0,001 (1 entre 1000)
Q20	0,01 (1 entre 100)
Q10	0,1 (1 entre 10)

NOTA

La puntuación de calidad se basa en una versión modificada del algoritmo Phred.

Para la puntuación de calidad, se calcula un conjunto de predictores para cada llamada de bases y, a continuación, se utilizan los valores de los predictores para determinar la puntuación Q en la tabla de calidad. Las tablas de calidad se crean para proporcionar predicciones de calidad con una precisión óptima de experimentos generados mediante una configuración específica de la plataforma de secuenciación y una versión de composición química concreta.

Tras determinar la puntuación Q, los resultados se registran en archivos de llamada de bases.

Agrupación de puntuaciones Q

RTA2 agrupa las puntuaciones de calidad en rangos específicos, o grupos, y asigna un valor a cada rango. La agrupación de puntuaciones Q reduce considerablemente los requisitos de espacio de almacenamiento sin que ello afecte a la precisión o al rendimiento de las aplicaciones sucesivas.

La agrupación de puntuaciones Q contribuye a la eficiencia de los procesos de análisis y a los requisitos en materia de transferencia de datos relacionados con la alta productividad del sistema HiSeq 4000. El archivo *.bcl resultante es más pequeño porque los algoritmos de compresión pueden comprimir el archivo de modo más eficaz. La cantidad de datos que se guardan en el ordenador del instrumento y que se transfieren a la ubicación de red son menores, lo que permite que el archivo se copie más rápidamente.

Apéndice C Archivos de resultados

Archivos de resultados de secuenciación	45
Estructura de las carpetas de resultados	45
Numeración de placas	46

Archivos de resultados de secuenciación

Tipos de archivo	Descripción, ubicación y nombre del archivo
Archivos de llamadas de bases	Cada placa analizada se incluye en un archivo de llamadas de bases, que contiene la llamada de bases y la puntuación de calidad codificada. Data\Intensities\BaseCalls\L00[X]: Los archivos se almacenan por carpetas de ciclo para cada carril. s_[Carril]_[Placa].bcl.gz , donde el carril es el número de carril de un dígito y la placa es el número de placa de cuatro dígitos. Los archivos de llamadas de bases se comprimen mediante el uso de la compresión gzip.
Archivos de ubicación de grupos	Para cada placa, un archivo de ubicación de grupo contiene las coordenadas X e Y para cada grupo. Los archivos de ubicación de grupos son el resultado de la generación de plantillas. Data\Intensities: Un archivo para el experimento se almacena en la carpeta Intensities (Intensidades). s.locs
Archivos de filtro	El archivo de filtro especifica si los grupos han superado los filtros. Estos archivos se generan en el ciclo 26 mediante el uso de 25 ciclos de datos. Data\Intensities\BaseCalls\L00[X]: Los archivos se almacenan en una carpeta para cada carril y placa. s_[carril]_[placa].filter
Archivos InterOp	Archivos binarios de informes utilizados por el Visor del análisis de secuenciación. Los archivos InterOp se actualizan durante el experimento. Carpeta InterOp
Archivo de configuración del análisis en tiempo real	El archivo de configuración de análisis en tiempo real se crea al inicio del experimento y contiene los parámetros de configuración de dicho experimento. [Carpeta raíz] RTAConfiguration.xml
Archivo de información del experimento	Indica el nombre del experimento, el número de ciclos de cada lectura, si es una lectura indexada y el número de sectores y placas de la celda de flujo. El archivo de información del experimento se crea al inicio del experimento. [Carpeta raíz] RunInfo.xml
Archivos de vistas en miniatura	Se trata de imágenes en miniatura para cada canal y placa de cada sector en cada ciclo durante la adquisición de imágenes. Thumbnail_Images\L00[X]\C[X.1]: Los archivos se almacenan en una carpeta para cada carril y una subcarpeta para cada ciclo. s_[carril]_[placa]_[canal].jpg : La placa se representa con un número de cuatro dígitos que indica la superficie, el sector y la placa. Consulte <i>Numeración de placas</i> en la página 46.

Estructura de las carpetas de resultados

- Config (Configuración): Parámetros de configuración del experimento
- Data (Datos)
 - intensities (Intensidades)
 - BaseCalls (Llamada de bases)

L00[X]: Archivos de llamadas de bases de cada carril, recopilados en un archivo por ciclo

N.º de documento 15066496 v05 ESP N.º de material 20015630

s.locs

images (Imágenes)

Focus (Enfoque)

L00[X]: Imágenes de enfoque para cada carril

interOp: Archivos binarios utilizados por el visor del análisis de secuenciación

Logs (Archivos de registro): Archivos de registro que describen los sucesos operativos

Recipe (Fórmula): Archivo de la fórmula específico del experimento con el nombre del ID del cartucho de reactivo

TALogs: Archivos de registro que describen los sucesos de RTA2

Thumbnail_Images: Imágenes en miniatura de nueve ubicaciones de un subconjunto de placas, generadas por cada ciclo y base

E RTAConfiguration.xml

RunInfo.xml

RunParameters.xml

Nombre y ruta de la carpeta del experimento

La carpeta del experimento es la carpeta raíz para los resultados de un experimento de secuenciación. Durante la configuración del experimento, el software le solicita que introduzca la ruta de la carpeta del experimento. De manera predeterminada, se le asignará a la carpeta un nombre con el siguiente formato:

AAMMDD_<Nombre del ordenador>_<Número del experimento>_<Lado de la celda de flujo><ID de la celda de flujo>

Ejemplo: 110114_SN106_0716_A90095ACXX

El número del experimento aumenta de uno en uno cada vez que lleva a cabo un experimento de secuenciación en el instrumento. La colocación de la celda de flujo (A o B) y el ID de esta que se ha introducido durante los pasos de configuración del experimento se añaden al nombre de la carpeta del experimento.

La carpeta del experimento se guarda en la ruta de salida especificada durante la configuración del experimento. La carpeta del experimento temporal para la celda de flujo A se guarda en la unidad D:, y la carpeta del experimento temporal para la celda de flujo B se guarda en la unidad E:.

Numeración de placas

La celda de flujo estampada de HiSeq 3000/4000 se digitaliza en 112 placas en cada carril, inferior y superior, para cada ciclo. Cada uno de los ocho carriles tiene dos sectores con 28 placas por sector. Las placas se numeran de acuerdo con su posición.

NOTA

Un sector es una columna de placas dentro de un carril de la celda de flujo.

El nombre de la placa contiene un número de cuatro dígitos que representa la posición en la celda de flujo.

- El primer dígito representa la superficie de la siguiente manera:
 - ▶ 1 corresponde a la parte superior
 - 2 corresponde a la parte inferior

N.º de documento 15066496 v05 ESP N.º de material 20015630

- El segundo dígito representa el sector de la siguiente manera:
 - ▶ 1 corresponde al primer sector
 - ▶ 2 corresponde al segundo sector
- Los dos últimos dígitos representan la placa, de 01 a 28. La numeración de las placas comienza por 01 en el extremo de salida de la celda de flujo hasta 28 en el extremo de entrada.

Este ejemplo indica una placa de la superficie superior de la celda de flujo, el segundo sector y la séptima placa.

Índice alfabético

%

% PF 42

A

ajustes, software 9 alertas descripciones 4 resolución 5 algoritmo Phred 43 alineación con PhiX 16 alineación de PhiX 16 almacenar solución de lavado de mantenimiento 28.31 aplicaciones, instaladas 4 archivo de configuración 45 archivo de información del experimento 45 archivos de llamadas de bases 42 archivos de marcador 40 archivos de memoria 39 archivos de registro 45 archivos InterOp 40 Archivos InterOp 45 asignar nombre carpetas de experimentos 46 asignar nombres carpetas de experimento 9 asistencia al cliente 52 asistencia en línea 1 asistencia técnica 52 ausencia de llamadas (N) 42 avuda documentación 1 generación de grupos 12 rehibridación del cebador 38 **SAV 25** ayuda, técnica 52

B

BaseSpace Broker 40 BaseSpace Enterprise 10 BaseSpace Onsite Sequence Hub conectar un experimento 15 configuración de dominio 10 integración 1 BaseSpace Sequence Hub conectar un experimento 15 configuración de dominio 10 hojas de muestras 17 iconos 6 transferencia de datos 40 BaseSpace® Sequence Hub integración 1 bcl2fastq, versión 39 burbujas 21, 24

С

cables USB, conectar 8 calidad de los grupos 42 cambio de reactivos durante un experimento 37 capacidad de almacenamiento optimización 44 carpetas de experimento, temporales 46 carpetas de resultados estructura 45 ubicaciones 9, 15 carpetas temporales 46 carriles celda de flujo 16, 46 cebado ajuste opcional 17 celda de flujo estampada 7 ID de celda de flujo 16 matriz de grupos 42 celda de flujo estampada 1, 7, 41 celda de flujo para el cebado 20 celdas de flujo adquisición de imágenes 46 cebado 20 colocación 3, 20, 23 inspeccionar 21, 24 matriz de grupos 41 colocar las celdas de fluio 20, 23 colores de la barra de estado 2 colores, barra de estado 2 compartimentos 2 conectar cables USB 8 conexión de red 40 configuración del experimento ciclos restantes 17 reactivos de cebado 17 configuración del laboratorio 2, 40 consumibles kits de secuenciación de Illumina 7 proporcionados por el usuario 11

N.º de documento 15066496 v05 ESP N.º de material 20015630 Para uso exclusivo en investigación. Prohibido su uso en procedimientos de diagnóstico. consumibles de secuenciación 7, 12 contaminación cruzada, prevención 29 conversión FASTQ 39 criterios de medición 40 cumplimiento 2

D

datos compresión 44 convertir 39 envío a Illumina 10 servicio proactivo de Illumina 10 datos de conversión 39 denominación placas 46 desmultiplexado 39 documentación 1, 52 dominio, configuración 10

E

encender el instrumento 8 errores 40 probabilidad 43 espacio disponible en el disco 27 espacio necesario en el disco 27 esquema de indexación 17 estado de la transferencia de datos servicio de copia de experimentos 6 estado de transferencia de datos BaseSpace Sequence Hub 6 estructura de carpetas 45 experimentos adyacentes 38

F

filtro de castidad 42 fluídica mantenimiento 26 fórmulas personalizadas 17 fórmulas, personalizadas 17 fugas 21, 24 funciones de hardware 1

G

gradillas de reactivos 3 gradillas, reactivos 3 guardar imágenes de las vistas en miniatura 15

Н

HCS 4 abrir 8 archivos de registro 35 ver opciones 9 hebras adelantadas 41 hebras retrasadas 41 hojas de muestras, necesarias 17

iconos 4-5 estado de la transferencia de datos 5 iconos del servicio de copia de experimentos 6 imágenes, guardar 15 inactividad, duración aceptable 33 incorporación de primera base 25 indicadores del sensor BaseSpace Sequence Hub 6 servicio de copia de experimentos 6 informe de primera base 16 informes, incorporación de primera base 25 inicializar el software 8 inicializar software, solucionar problemas 35 instalación, comprobación de fluídica 36 intensidades, supervisión criterios de medición de experimento 25 interferencias 41

J

juntas 28 juntas, solucionar problemas 35

K

kits de SBS 7

L

lado de celda de flujo 46 lado de la celda de flujo 3 lado de las celdas de flujo 3 lavado posterior al experimento 26 lavados agua frente a mantenimiento 28 beneficios 28 requisitos del sistema 26, 28

N.º de documento 15066496 v05 ESP N.º de material 20015630

solución de lavado de mantenimiento 28, 31 lavados con agua duración y frecuencia 26 volúmenes administrados 27 lavados de mantenimiento 28 frecuencia 28 reutilización de una solución 29 reutilizar la solución 28, 31 volúmenes administrados 30, 32 liberar espacio en disco 27 LIMS configuración 9 servidor 9

Μ

mantenimiento preventivo 28 matriz de grupos 42 módulo óptico 2

Ν

nanopocillos 7 nombre del experimento 16 número de ciclos realizados frente a introducidos 16 números de catálogo consumibles proporcionados por el usuario 11 distribuidores 38 kits de rehibridación de Illumina 38

0

Opciones de indexado 16 opciones de pausa 37-38

Ρ

Páginas de asistencia 2 palanca de la celda de flujo 3 intermitente 35 naranja 35 palanca de la celda de flujo intermitente 35 palanca de la celda de flujo naranja 35 Pantalla de reactivos 17 pantalla de resumen del experimento 25 Pantalla Flow Cell Setup 16 parámetros de química 17 parámetros del experimento, revisión 18 pasadores guía 20, 23 pasos de química, supervisar 25 pasos de secuenciación, descripción general 14 RTA 40 pérdida de datos 37, 39 pérdida de registro 36 pérdida de registro, lectura 1 36 placas 39, 46 pocillos policionales 42 posiciones de los reactivos gradilla SBS 18 posiciones de los reactivos SBS 18 posiciones, reactivos SBS 18 preparación del centro 2, 40 preparar el cebado 22 puntuaciones de calidad supervisión 25 puntuaciones Q 43

R

reactivos cambio durante un experimento 37 manipulación posterior al experimento 26 preparar 12 registrar ID del kit 17 secuenciación 12 refrigerador de reactivos, temperatura 4 registro, solucionar problemas 41 registros de error 35 registros de errores 40 rehibridación 37-38 reiniciar el instrumento 34 residuo de cebado 22 reutilización de una solución de lavado de mantenimiento 29 RTA 4 RTA2 archivos de entrada 39 finalizar un experimento 37 interrupción 39

S

SAV 4 archivos InterOp 45 documentación 25 ficha de índice 39 versión 40 sectores 15, 46

seguridad 2 sensores 5 servicio de copia de experimentos 5, 40 Servicio de supervisión proactiva de Illumina 10 sistema de fluídica 3 acceso 2 mantenimiento 28 solucionar problemas 35-36 sistema de vacío 3 software aplicaciones instaladas 4 funciones 1 solucionar problemas 35 solución de lavado de mantenimiento 28, 31 Solucionar problemas de lectura 1 36, 38 supervisión remota 15

Т

tablas de calidad 43 tapas de embudo 18 temperatura, refrigerador de reactivos 4 transferencia de datos 27, 40 tubos de residuos 22, 30, 32

U

ubicación de la carpeta del experimento 46 ubicaciones de archivo 45 ubicaciones de archivos 45 ubicaciones de carpeta 9, 45-46 ubicaciones de carpeta predeterminadas 9 ubicaciones de grupo 7 ubicaciones de grupos 41 ubicar a los grupos 41 unidad de almacenamiento temporal 27

V

valores de intensidad 41 ventana de opciones del menú 9 vistas en miniatura 15, 45 volúmenes administrados cebado 22 lavados con agua 27 lavados de mantenimiento 30, 32 volúmenes esperados cebado 22 lavados con agua 27 lavados de mantenimiento 30, 32

Asistencia técnica

Si necesita asistencia técnica, póngase en contacto con el servicio de asistencia técnica de Illumina.

Sitio web:
Correo
electrónico:

www.illumina.com techsupport@illumina.com

Números del servicio de asistencia al cliente de Illumina

Región	Teléfono gratuito	Regional
Norteamérica	+1.800.809.4566	
Alemania	+49 8001014940	+49 8938035677
Australia	+1.800.775.688	
Austria	+43 800006249	+43 19286540
Bélgica	+32 80077160	+32 34002973
China	400.066.5835	
Dinamarca	+45 80820183	+45 89871156
España	+34 911899417	+34 800300143
Finlandia	+358 800918363	+358 974790110
Francia	+33 805102193	+33 170770446
Hong Kong	800960230	
Irlanda	+353 1800936608	+353 016950506
Italia	+39 800985513	+39 236003759
Japón	0800.111.5011	
Noruega	+47 800 16836	+47 21939693
Nueva Zelanda	0800.451.650	
Países Bajos	+31 8000222493	+31 207132960
Reino Unido	+44 8000126019	+44 2073057197
Singapur	+1.800.579.2745	
Suecia	+46 850619671	+46 200883979
Suiza	+41 565800000	+41 800200442
Taiwán	00806651752	
Otros países	+44.1799.534000	

Hojas de datos de seguridad (SDS): Disponibles en el sitio web de Illumina, support.illumina.com/sds.html.

Documentación del producto: Disponible para su descarga en formato PDF en el sitio web de Illumina. Vaya a support.illumina.com, seleccione un producto y, a continuación, seleccione **Documentation & Literature** (Documentación y bibliografía).

N.º de documento 15066496 v05 ESP N.º de material 20015630

Illumina 5200 Illumina Way San Diego, California 92122 (EE. UU.) + 1 800 809 ILMN (4566) + 1 858 202 4566 (fuera de Norteamérica) techsupport@illumina.com www.illumina.com

Para uso exclusivo en investigación. Prohibido su uso en procedimientos de diagnóstico.

illumina

© 2018 Illumina, Inc. Todos los derechos reservados.